
Lambda-search in game trees 
– with application to Go

Thomas Thomsen

Stockholmsgade 11, 4. th.
DK-2100 Copenhagen, Denmark

thomas@t-t.dk

Abstract. This paper proposes a new method for searching two-valued (binary)
game trees in games like chess or Go. Lambda-search uses null -moves together
with different orders of threat-sequences (so-called lambda-trees), focusing the
search on threats and threat-aversions, but stil l guaranteeing to find the mini-
max value (provided that the game-rules allow passing or zugzwang is not a
motive). Using negligible working memory in itself, the method seems able to
offer a large relative reduction in search space over standard alpha-beta compa-
rable to the relative reduction in search space of alpha-beta over minimax,
among other things depending upon how non-uniform the search tree is.
Lambda-search is compared to other resembling approaches, such as null-move
pruning and proof-number search, and it is explained how the concept and
context of different orders of lambda-trees may ease and inspire the implemen-
tation of abstract game-specific knowledge. This is illustrated on open-space
Go block tactics, distinguishing between different orders of ladders, and offe-
ring some possible grounding work regarding an abstract formalization of the
concept of relevancy-zones (zones outside of which added stones of any colour
cannot change the status of the given problem).

Keywords: binary tree search, threat-sequences, null -moves, proof-number
search, abstract game-knowledge, Go block tactics

1  Introduction

λ-search is a general search method for two-valued (binary) goal-search, being in-
spired by the so-called null -move pruning heuristic known from computer chess, but
used in a different and much more well -defined way, operating with direct threats,
threats of forced threat-sequences, and so on.

To give a preliminary idea of what λ-search is about, consider the goal of mating in
chess. A direct threat on the king is called a check, and we call a sequence of checks
that ends up mating the king a forced mating check-sequence. However, a threat of
such a forced mating check-sequence is not necessarily a check-move itself, and such
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a meta-threat – being of a second order compared to the first-order check moves in the
check-sequence – can be a more quiet, enclosing move.1

Similarly, in Go, a direct threat on a block of connected stones is called an atari. A
forced atari-sequence resulting in the capture of the block is called a working ladder
(Japanese: shicho). Hence, in this context, a (meta-)threat of a forced threat-sequence
would be a ladder-threat, which does not have to be an atari itself. Consider figure 1:
Black cannot capture the white stone a in a ladder, because of the ladder-block (the
other white stone). An example of such a failed attempt is shown in figure 2. Now,
providing that black gets a free move (a move that is answered with a pass by white),
there are a number of ways in which black can make the ladder work. One of the pos-
sibiliti es could be playing a free move at c in figure 3. This threatens the ladder shown
in figure 4. Another possibilit y could be playing at d in figure 3, threatening the lad-
der shown in figure 5.

Fig. 1. How to capture a? Fig. 2. A fail ing ladder Fig. 3. Black λ2
-moves?

(λ1
=0)

Fig. 4. Working ladder Fig. 5. Working ladder
(λ1

=1) after black c (λ1
=1) after black d

The moves c and d in figure 3 are thus more indirect threats on the white stone a,
compared to a direct (first-order) atari, and this possible generalization of the concept
of threats is the main theme of the present paper.

                                                          
1 Note: for readers not famili ar with Go, the appendix contains a chess-example similar to the

Go-example given below. In chess, goals other than mating could be, for instance, trapping
the opponent's queen, creating a passed pawn, or promoting a pawn.
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To introduce the terminology used in this paper, we denote a direct threat-sequence a
λ1-tree, consisting solely of λ1-moves (checks/ataris for the attacker and moves
averting these for the defender). The λ1-tree is a standard search tree solvable by
means of any minimax search technique, with value 1 (success for the attacker) or 0
(success for the defender).

At the next level of abstraction, a λ2-move for the attacker is a move that threatens
a λ1-tree with value 1, if the attacker is allowed to move again. Figure 6 depicts all
possible black λ2-moves given unlimited search depth; i.e., all black moves threaten-
ing a working ladder (or a direct capture; hence the two atari-moves on white a are
also λ2-moves) if left unanswered. If e.g. 1 in figure 7 (= c in figure 3) is chosen,
black threatens the ladder depicted in figure 4. Figure 7 then shows all possible white
moves averting that threat. In the general λ2-tree, these two white moves in Figure 7
are hence λ2-children of black 1, and in figure 8, the two black moves are λ2-children
of white 2 (again reviving the ladder-threat).

Fig. 6. Black λ2
-moves Fig. 7. White λ2

-moves Fig. 8. Black λ2
-moves

to kill a  after black 1 after white 2

In this way, a λ2-tree can be built out of λ2-moves, these being threats of threat-se-
quences (ladder-threats) for the attacker, and aversions of threat-sequences (ladder-
breakers) for the defender.2 See the appendix, figures A1-A3, for a similar chess-ex-
ample.

In the context of Go block tactics, a λ2-tree can be interpreted as a net or loose lad-
der (Japanese: geta or yurumi shicho), but the order of λ can easily be > 2. For in-
stance, loose loose ladders (λ3-trees) are quite common in open-space Go block tac-
tics, the λ3-trees being built up of λ3-moves, originating from λ2-trees. Tsume-go
problems (enclosed li fe/death problems) or semeai (race-to-capture) usually involves
high-order λn-trees (mostly n ≥ 5), and connection problems (trying to connect two
blocks of stones) often features high λ-orders, too. For example, in figure 9, white a
can be kill ed in a λ7-tree (the solution is black b, 21 plies/half-moves), whereas in fig-

                                                          
2 As most readers with a basic knowledge of Go would know, the best black λ2-move is b in

figure 3, after which there are no white λ2-moves. Another way of stating this is that after
black b, there is no way for white to avoid being kill ed in a subsequent ladder (λ1-tree), and so
white can be declared unconditionally dead.
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ure 10, black a and b can be connected into one block in a λ3-tree (the solution is
black c or d, 15 plies).3

Fig. 9. Black to kil l white a (λ7) Fig. 10. Black to connect a and b (λ3)

As it is shown in section 3, compared to standard alpha-beta, λ-search can often yield
large reductions in the number of positions generated in order to solve a given prob-
lem, especially if the search tree is highly non-uniform in a way exploitable by λ-
search. Hence, the λ-search methodology could probably prove useful for goal-search
in almost any two-player, full -information, deterministic zero-sum game.4

The point about λ-search is that in each λ-tree, all l egal moves are not just being
blindly generated and ploughed through, but instead the search focuses on those
making and averting (more or less direct) threats. This implicit move-ordering directs
the search towards its goal, and even though the λ-search methodology does not in it-
self contain any knowledge of the concrete game-problem analyzed, λ-moves often
seem to have at least some minimum of meaning or purpose (cf. figures 6-8, or fig-
ures A1-A3 in the appendix), in contrast to the often random-looking move sequences
generated by no-knowledge alpha-beta search.

In addition to this implicit threat-based move-ordering, the λ-search approach can
often ease and inspire the implementation of abstract game-specific knowledge. For
instance, regarding λ1-moves in chess mating problems, there are only three ways of
averting a check (capturing the threatening piece, putting a piece in between, or
moving the king). Similarly, regarding λ1-moves in Go block tactics (ladders), the at-
tacker must always play on one of the defender's liberties, whereas the defender must
always play on his remaining liberty, or capture a surrounding block. Section 4 de-
scribes an attempt at formulating some abstract/topological Go-tactical knowledge re-
garding general λn-trees, these abstract rules relying both upon the value of the λ-or-
der n, and on information generated during search of lower-order λ-trees.

                                                          
3 Note generally that if λn = 1, the attacker has to spend n + 1 extra moves (moves that can be
answered by a pass/tenuki by the defender) in order to "execute" the goal. Hence, in figure 9,
white a can be conceived of as having n + 1 = 8 effective liberties, instead of only the 5
real/visible ones. If the black block surrounding white was vulnerable, such knowledge would
be crucial in for instance semeai problems (cf. [10]), or regarding the difficult problem of
"opening up" tsume-go problems (cf. [12]).

4 Provided that the game-rules allow passing, or zugzwang (move-compulsion) is not always a
motive for obtaining goals.
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2  Formalizing the λλ-search Method

In this section, the λ-search method is formalized in its most general form, not tied to
the context of any specific game. The λn-tree is defined as follows:

Definition 1: A λn-tree is a search tree for trying to achieve a single well -defined goal,
the search tree consisting solely of λn-moves (defined in definition 2), and a λa

n-tree
being a λn-tree where the attacker moves first. The minimax value of a λn-tree is either
1 (success for the attacker) or 0 (success for the defender).5 A node is a leaf (terminal
node) if the node has no children because there are no legal λn-moves following it. If
this is so, the value of the leaf is 1 if the defender is to move, and 0 if the attacker is to
move.

The λ0-tree is particularly simple: λa

0 = 1 if the attacker's goal can be obtained di-
rectly by at least one of the attacker's legal moves, and λa

0 = 0 otherwise.

Definition 2: A λn-move is a move with the following characteristics. If the attacker
is to move, it is a move that implies – if the defender passes – that there exists at least
one subsequent λa

i-tree with value 1, 0 ≤ i ≤ n–1. If the defender is to move, it is a
move that implies that there does not exist any subsequent λa

i-tree with value 1, 0 ≤ i
≤ n–1.

Example (Go block tactics): Regarding the construction of a λ2-tree, cf. figure 3.
Here, a black play at c is a λ2-move. After c, provided that white passes, λa

0 = 0 (the
block cannot be captured directly), but λa

1 = 1 (the block can be captured in a ladder,
cf. figure 4).

After black plays this λ2-move at c, we have the situation in figure 7. Here, a white
move at any of the two marked points is a λ2-child of the black λ2-move, since after
any of these two white moves, λa

0 = λa

1 = 0 (black cannot follow up with neither a di-
rect capture nor a working ladder).

The λ-method can be ill ustrated as in figure 11. In this figure, black a is a λn-move,
because – if white passes – it can be followed up with a λa

n–1-tree with value 1, cf. the
small tree to the left. Considering the white move b, this is likewise a λn-move, since
it is not followed by a λa

n–1-tree with value 1, cf. the small tree to the right.6 Other le-
gal black and white moves are pruned off , and hence the λn-tree generally has a much
smaller average branching factor than the full search tree. Note that in all the three
depicted λ-trees the attacker moves first, and note also that the algorithm works recur-
sively in the "horizontal" direction, so that the moves in the small λn–1-trees to the left
and right are in turn generated by λn–2-trees, and so on downwards, ultimatively end-
ing up with λ0-trees. Note finally that a λn–1-tree generally contains much fewer nodes

                                                          
5 The terms "attacker" and "defender" are arbitrary and could just as well be "left" and "right".

For instance, in Go, "attacking" could just as well be trying to connect two blocks of stones,
and "defending" trying to keep them disconnected.

6 In fact, small λa

n–2-trees, λa

n–3-trees, and so on, should also be included at the left and right (cf.
definition 2), but these are omitted here for the sake of clarity.
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than a λn-tree. Having made the above definitions, it is time to introduce an important
theorem:

Theorem 1 (confidence): If a λa

n-tree search returns the value 1 (success for the at-
tacker), this is the minimax value of the position – the attacker’s goal can be achieved
with absolute confidence.

Proof: For a λa

n-tree to return the value 1, the attacker must in each variation be
able to force the defender into situations where he has no λn-moves (cf. definition 1).
The defender not having any λn-move means that no matter how the defender plays,
the attacker can follow up with a lower-order λ-tree with value 1: λa

i = 1, 0 ≤  i  ≤  n –
1. By the same reasoning as before this in turn means that the attacker can force the
defender into situations where he has no λi-moves. By recursion, this argument can be
repeated for lower and lower orders of λ-trees, until we (in at most n steps) end up
with a λ0-tree. And if a λa

0-tree has value 1, the goal is obtained directly (cf. definition
1). 

�

This theorem is crucial for establishing the reliabilit y of λ-search. As theorem 1
shows, if a λa

n-tree returns the value 1, the attacker’s success is a proven success no
matter how the defender tries to refute it, so if a λ-search finds a win for the attacker,
one can have absolute confidence in it.

Theorem 1 is obviously not symmetric. If a λa

n-tree search returns the value 0, this
does not entail that there could not be a forced attacker's win in the full game-tree. It
only means that the defender cannot lose by means of attacker's λn-moves, but there
might very well be a forced win for the attacker lying in wait in trees of order n+1 or
higher.

Example (Go block tactics): If black plays a working ladder (λ1=1), he is certain to
kill t he white block: the defender cannot avoid being kill ed. But the other way round,

λa
n-tree

λa
n–1= 1 λa

n–1= 0

aa

bwhite pass

Fig. 11. The λn-tree



7

if a white block cannot be kill ed in a ladder, this does not, of course, imply that it
could not, for instance, be kill ed in a loose ladder.

Seen in the light of the above, given some specific goal for the attacker to achieve,
and provided that the attacker cannot achieve the goal directly within the first move
(λa

0 = 0), the strategy will be to first try out a λa

1-tree. If λa

1 = 1, we are finished, cf.
theorem 1. If λa

1 = 0, we continue with a λa

2-search, and so on until ti me runs out. If
we end up with λa

n = 0 for some value of n, we cannot say anything authoritative on
the status of the problem, other than that the defender survives a λa

n-attack.
The next question is what happens asymptotically as λn-trees of higher and higher

order get searched? Provided that we know a priori that the attacker’s goal can be
reached within at most d plies by optimal play (d being an odd number), can we be
sure that the value of λa

n will converge to 1 for some n, as n tends towards infinity?
If the game-rules allow passing, the answer is yes, and in that case it is possible to

prove that n ≤ (d–1)/2, as shown in theorem 2 below. First a lemma:

Lemma 1. Consider a full search tree consisting of all l egal moves for both players.
In this search tree, consider a node x where the attacker is on the move. Assume that
we are not considering the root node (move #1), but some attacker's move deeper
down the tree (i.e., some odd move number ≥ 3). Consider the sub-tree unfolding
from node x. For the attacker to be able to force the defender into a λa

n-tree with value
1 expanding from node x, the attacker must have been threatening λa

n = 1 when he
was on the move last time. Had he not been threatening λa

n = 1, the defender could
have passed, after which (cf. definition 2) the value of a subsequent λa

n-tree would
have been  0.

Example (Go block tactics): in order to be able to force the defender into a working
ladder (λa

1 = 1), the preceding attacker's move must have been a ladder-threat. If this
had not been so, the defender could have passed, and the ladder would still not work.

Theorem 2 (convergence). Consider again the full search tree consisting of all l egal
moves for both players. Assume that we know a priori that there exists a forced win
for the attacker in at most d plies, d being some odd number ≥ 1. Consider a node y at
depth d – 1 (with the attacker to move) after which the forced win is executed at depth
d. This means that the tree expanding from y is a λa

0-tree with value 1. Using Lemma
1, this again means that the attacker must have been threatening λa

0 = 1 when he
played last time (i.e., played a move at depth d – 2). Threatening λa

0 = 1 is the same as
playing a λ1-move; hence the attacker must have played a λ1-move at depth d – 2.

In order for the attacker to be able to force the defender into this λ1-move at depth
d – 2, it must have been part of a λa

1-tree with value 1. The first attacker's move in this
tree can be at any depth d1, where 1 ≤ d1 ≤ d – 2. If d1 = 1, we are finished (hence
establishing n = 1). Else, if 3 ≤ d1 ≤ d – 2, in order to force the defender into this λa

1-
tree with value 1, the attacker must have been threatening λa

1 = 1 (= playing a λ2-
move) at some depth d2, where 1 ≤ d2 ≤ d1 – 2.

This goes on recursively for λ-trees of higher and higher order (each time moving
at least two plies upwards in the full search tree), so in the worst case we end up with
a tree of order n = (d–1)/2. This reasoning can be repeated for all nodes y at depth d –
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1 after which the forced win is executed at depth d, and hence it is proved that n ≤ (d–
1)/2. �

Example (Go block tactics): Assume that we know a priori that the attacker can kill
the defender in at most 5 plies. The attacker's move #5 must have been the capture
(taking the stones off the board), so the attacker's move #3 must have been an atari
(λ1-move) – otherwise the defender could have passed, and the stones could not have
been taken off the board at move #5. Regarding the attacker's move #1, it can have
been a(nother) λ1-move if the whole killi ng sequence is a working ladder (λ1-tree with
value 1). Otherwise, the first attacker's move could have been a λ2-move (loose ladder
move), threatening λa

1 = 1 (an ordinary ladder). But if the attacker's move #1 had not
been either a λ1-move or a λ2-move, the defender could have passed at move #2, and
there would have been no way for the attacker to establish a working ladder (λ1-tree)
at move #3, and hence no way to kill t he defender at move #5. Thus, if d = 5, the λ-
search can only be of order 1 or 2, meaning that if d = 5 and a λ2-search returns value
0, the problem cannot be solved in 5 plies. This corresponds to the inequality, since
the formula states that n ≤ (d–1)/2 = 2.

Considering games like chess where passing is not allowed, theorem 2 does not hold,
since the abilit y to pass is a prerequisite for Lemma 1. However, apart from
zugzwang-motives (e.g. in late chess endgames), this is not a problem if the defender
has always at least some harmless/non-suicidal move to play instead of a pass move.
Hence, for practical purposes, theorem 2 also applies to goals such as e.g. mating in
middle-game chess positions. And it should be noted that theorem 1 applies whether
passing is allowed or not.

Thus, theorems 1 and 2 show that λ-search is not to be interpreted as some heuris-
tic forward-pruning technique, since a λ-search – in the worst case searched to λ-or-
der n = (d–1)/2 – returns the minimax value, provided that passing is allowed or
zugzwang is not a motive. Some pseudo-code containing the λ-search methodology
can be found in [11].

3  Compar ing λλ-search with other Search Methods

Having offered the proofs of confidence and convergence, the question is how effec-
tive the λ-search method really is compared to other techniques, such as, e.g., stan-
dard alpha-beta, alpha-beta with null -move-pruning, or proof-number search?

3.1  Standard alpha-beta

Given some simpli fying assumptions it is possible to indicate the effectiveness of λ-
search compared to standard alpha-beta. Below, it is shown that this effectiveness
generally depends on the branching factor of the λ-search trees compared to the
branching factor of the full search tree, combined with the λ-order n.

Consider a general λ-search tree of some order n, with the attacker moving first,
and assume that an attacker's win exists in at most d plies (d being uneven). Also as-
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sume that passing is allowed or zugzwang is not a motive. We will now try to count
the total number of positions generated in order to search such a λn-tree, including the
positions generated in the lower-order λ-trees. It is assumed that minimax is used in
both the λ-tree, and as the standard reference algorithm, for reasons to be explained.

Assume furthermore that B is the average branching factor of the full search tree (=
the number of legal moves in each position: in chess, around 30-40, and in Go around
200-250). Assume furthermore that all λ-trees have the same average branching fac-
tor, b (b being ≤ B). In order to generate the attacker's moves at depth 1 in the λn-tree,
all l egal attacker's moves must be tried out, to see whether or not they can be followed
by some λi-tree (i ≤ n–1) with value 1 (cf. a in figure 11). This amounts to Bn λi-tree
searches (the λi-trees being of order i = 0, 1, ... , n–1). And at depth 2 in the λn-tree,
for each of the defender's λn-nodes, all l egal defender's moves must be tried out, to see
whether or not they are followed by λi-trees (i ≤ n–1) with value 0 (cf. b in figure 11).
This amounts to a total of bBn λi-tree searches (the λi-trees being of order i = 0, 1, ... ,
n–1).

Hence, in order to generate all λn-moves at depths 1 and 2, corresponding to the
three black moves and the nine white answers in the λn-tree in figure 11, (1+b)Bn
number of λi-trees must be analyzed (the λi-trees being of order i = 0, 1, ... , n–1), all
of them to depth d–2. By a similar argument, the λn-moves at depths 3 and 4 in the λn-
tree require that (b2+b3)Bn number of λi-trees (the λi-trees being of order i = 0, 1, ... ,
n–1) are searched to depth d–4, and so on.

Now the question is how deeply the λn-tree needs to be searched? This depends on
circumstances, and the depth will generally be between 2 and (d–1) – 2(n–1) plies. To
simplify, we assume the worst case, namely that the λn-tree needs to be searched to its
maximum depth, i.e., (d–1) – 2(n–1) plies.

The above reasoning leads to the recursive algorithm shown in figure 12 – stated in
pseudo-code – for the total number of positions generated in order to search a λn-tree
with search depth d.

The recursion ends with the number of generated moves in the λ0-tree, since the
algorithm knows that a λ0-tree demands B positions to be evaluated. For given values
of B and b, the above-mentioned recursive formula is thus capable of estimating the
total number of positions generated in a λn-search to depth d, where all the λn-trees are
searched by means of minimax. This estimate can be compared to (Bd+1–1)/ (B–1),
being the estimated total number of positions generated in a minimax-search. Thus,
for given B, b, n and d, we define the reduction factor as follows: r = [(Bd+1–1)/(B–1)] /
lambdaMovesGenerated(n, d).
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The reader might now ask why alpha-beta is not used instead of minimax? This is
only because assuming minimax makes the reduction factor easier to compute – the
point being that using alpha-beta (or any other search technique) instead of minimax
would not alter the reduction factor, assuming that alpha-beta (or any other search
technique) works equally eff iciently in the λ-trees and in the standard (full ) search
tree. The eff iciency of alpha-beta-pruning thus cancels out in the numerator and de-
nominator of the reduction factor, so that the reduction factor can also be interpreted
as the eff iciency of the λ-search technique (using standard alpha-beta in the λ-trees)
over standard alpha-beta.

To provide an idea of the magnitude of the reduction factor, we show two tables
below: namely (b, B) = (4, 40) and (b, B) = (8, 40), calculated by means of the algo-
rithm in figure 12.

Table 1. Reduction factor, λ-search relative to standard alpha-beta, (b, B) = (4, 40)

n=1 n=2 n=3 n=4 n=5
d=3 8
d=5 772 65
d=7 76.942 3.174 482
d=9 7.692.425 209.432 16.192 3.328
d=11 769.231.503 15.625.505 812.550 88.201 21.791

Table 2. Reduction factor, λ-search relative to standard alpha-beta, (b, B) = (8, 40)

n=1 n=2 n=3 n=4 n=5
d=3 4,6
d=5 112 20
d=7 2.804 251 76
d=9 70.112 4.173 666 254
d=11 1.752.804 78.158 8.530 1.810 781

lambdaMovesGenerated(n,d) {
  if(n==0)return B;
  sum=0;
  for(i=2;i<=(d-1)-2*(n-1);i=i+2) {
    for(j=0;j<=n-1;j=j+1) {
      sum=sum+(b**(i-2)+b**(i-1))*B*lambdaMovesGenerated(j,d-i);
    }
  }
  return sum;
}

Fig. 12.  Pseudo-code for counting the total number of positions generated by a λn-search to
depth d.
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In order to have something to compare with, the reduction factor of standard alpha-
beta relative to minimax is shown in the table below.7

Table 3. Reduction factor, standard alpha-beta relative to minimax, B = 40

good
move order

average
move-order

bad
 move-order

d=3 15 3,9 1,8
d=5 60 7,8 2,4
d=7 238 15,6 3,1
d=9 952 31,2 4,2
d=11 3.810 62,4 5,6

Tables 1 and 2 show that the largest reductions are found for n = 1, i.e., if the problem
can be solved by means of a number of direct attacker's threats (chess mating: checks
– Go block tactics: ataris). For growing depth, this renders a huge reduction factor
relative to standard alpha-beta, both if the threats and threat-aversions on average
make up 10% of the legal moves (table 1), or 20% (table 2). This corresponds to the
full search tree being highly non-uniform in a way exploitable by λ-search. But even
for more "saturated" problems; i.e., problems needing a larger value of n, the reduc-
tion factor is still i mpressive. For instance, with b/B being 20% as in table 2, a λ2-
search to a depth of 5 plies would still – on average – require only about 1/20 of the
positions generated with standard alpha-beta to depth 5, this reduction factor being
comparable to the reduction factor of good or average move-ordering alpha-beta over
minimax at depth 5 (cf. table 3).8

As it is seen, the relative reduction in search space by using λ-search instead of
standard alpha-beta is comparable to the relative reduction in search space by using
alpha-beta instead of minimax, especially for low saturation problems with n < (d–
1)/2. It is possible to prove that – for large B and b, and for n relatively small
compared to (d–1)/2 – the reduction factor, r, can be approximated by:

.
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In that case, the reduction factor depends on the size of B compared to b in the (d–n–
1)'th power, divided by a binomial coefficient. A possible interpretation: Assume that
we had some divine knowledge, knowing in each position of the full search tree

                                                          
7 Note: In the calculation of these reduction factors it is assumed that the best attacker's move is

found after 10 tries (good), 20 tries (average), or 30 tries (bad). So for instance, for t = 3, the
reduction for good move-ordering is calculated as follows: (1+40+402+403)/-
(1+10+10·40+10·40·10). It should also be noted that the move-ordering can often be improved
upon in a number of ways, but here we focus on standard alpha-beta only.

8 This could, for instance, be a model of those mate-in-two problems in chess where the first at-
tacker's move is not a check (whereas the next is the checkmate). In that case – a λ2-tree
searched to depth 5 – a reduction factor of about 20 would be expected. Alternatively, if the
first attacker's move is a check (and the next the checkmate) – a λ1-tree – the reduction factor
would be expected to be about 112.
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which b out of the total of B legal moves contain the best move (thus in each position
having only to consider b instead of B moves). In that case, the reduction factor would
be r = [(Bd+1–1)/(B–1)] / [(bd+1–1)/(b–1)] ≈ (B/b)d. However, since we do not have ac-
cess to such divine knowledge, lower-order λ-trees have to be searched in order to
find the b interesting moves (this being more costly for higher n), explaining the bi-
nomial coeff icient and the fact that the exponent is (d–n–1) rather than just d.

From the formula it is seen that the crucial factor for the reduction factor is the
relative size of b in relation to B. Thus, we would expect similar reduction factors (ta-
bles like table 1 and 2) for (b, B) = (8,40) and, e.g., (b, B) = (50,250), whereas the re-
duction factors for, e.g., (b, B) = (8,250) would be much larger than for (b, B) =
(8,40). It should, however, be emphasized that all the above calculations must be
taken with a large pinch of salt, since the calculations just yield some theoretical and
not empirical indications of the strength of λ-search over standard alpha-beta. A more
authoritative estimate of the eff iciency of λ-search would imply analyzing a large
number of realistic game-problems with different search techniques, including λ-
search, thus being able to offer some real-world statistics on the relative merits of the
different approaches.

3.2  Null -move Pruning

Alpha-beta augmented with null -move pruning (see e.g. [5] for an overview) might
seem similar to λ-search, but even though the underlying idea is quite similar, there
are a number of important differences – apart from the fact that alpha-beta augmented
with null -move pruning can be directly applied to non-binary search trees (in contrast
to λ-search):9

First, in λ-search, only the defender makes null -moves, and λ-search does not use
depth-reduction when searching the lower-order λ-trees.

Second, a λn-search controls the total number of admissible defender's null -moves
in any branch between some node and the root, this number always being ≤ n.
Knowing the concrete λ-order of a problem (i.e, distinguishing clearly between dif-
ferent orders of threats) often eases the implementation of abstract game-specific
knowledge.

Third, because null -move pruning operates with a depth reduction factor for
searching the sub-tree following a null -move, an erroneous result might occasionally
be returned. Null -move pruning with depth-reduction works extremely well i n many
applications (for instance computer chess), but it cannot offer the same absolute reli -
abilit y as λ-search (cf. the theorems of confidence and convergence).

                                                          
9 The reader might ask whether λ-search could somehow be used for non-binary search trees?

A possibilit y would be to define the goal as follows: If a leaf-node has evaluation value larger
than some threshold, the value of the node is 1, otherwise 0. This way, λ-search could be used
in the same way as a null -window alpha-beta-search. However, a general non-binary search
tree is usually very uniform (unless, for instance in chess, a hidden mate exists), implying n =
(d–1)/2 and hence a limited reduction factor (full "saturation"; cf. the diagonals of tables 1
and 2).
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Finally, λ-search is not tied to any specific search-technique for searching the λ-
trees, thus opening up the possibilit y of easily combining null -moves with for instance
proof number search.

3.3  Proof-number Search

A recent and very popular search technique for searching two-valued search trees is
the so-called  proof-number search (see e.g. [1] and [2]). Like λ-search, proof-number
search exploits non-uniformity of the search tree, trying to search the thinner parts of
the search tree first. Still , the differences between the two approaches should be
pointed out – apart from the fact that proof-number search has no problems with
zugzwang-motives (in contrast to λ-search):

First, proof-number search uses a large working memory overhead, since the whole
(or at least much of the) search tree needs to be stored in memory. In contrast, λ-
search using, for instance, standard alpha-beta (without transposition tables etc.) as
the "search-engine"  has negligible working memory requirements.

Second, it is not an easy task to incorporate transposition tables into proof-number
search. In contrast, if alpha-beta is used to search the λ-trees, transposition tables can
be used with as littl e diff iculty as in standard alpha-beta.

Third, λ-search depends on some technique for searching the λ-trees. But the con-
crete "search-engine" could be anything as long as it works – including proof-number
search. Hence, proof-number search could be combined with λ-search with very littl e
effort (thus combining null -moves and proof-numbers), and even if some new power-
ful tree-searching technique should be invented in the future, λ-search would most
likely benefit from it as well .

Finally, and very importantly, as mentioned in the comparison with null -move
pruning, the possibilit y of distinguishing clearly between different orders of λn-trees –
i.e, in each position knowing the context of the value of n (and in addition: having ac-
cess to information generated in lower-order λ-trees) – often makes it easier to im-
plement abstract game-specific knowledge. Additionally, the distinction between dif-
ferent orders of λ-trees also makes it possible to concentrate time- and/or memory-
expensive techniques on the highest-order λ-trees. Time-expensive techniques could
e.g. be elaborate move-ordering schemes or pattern-matching, and memory-expensive
techniques could be the use of transposition tables, or the use of proof-number search.

4  Implementing Abstract Game-Knowledge (Go Block Tactics)

4.1  The Relevancy-zone

One of the hardest problems in Go is how to limit the search in open-space Go block
tactics by means of characterizing some a priori zone of relevance; that is, some area
of the board outside of which the addition of any number of black or white stones in
any configuration cannot alter the status of the problem. For instance, white a in fig-
ure 3 cannot be caught in a normal ladder, an example of which is shown in figure 2.
Adding a free black stone at e in figure 3 will not alter the status of the ladder (still
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not working), whereas a free black stone at e.g. f will make the ladder work. Actually,
adding a free black stone at any of the marked points in figure 6 makes the ladder
work; hence each of these points is a possible λ2-move (loose ladder move) for the
attacker.

However, it does not take long looking at figures 2 and 6, before one realizes that
the true relevancy-zone seen in figure 6 should be somehow derivable from or
dependent upon the "shadow" of the stones played in figure 2. So the idea is that the
true relevancy-zone, called the R-zone, is situated inside another zone, called the R*-
zone, consisting of all stones (= "shadow stones") played to prove that a lower-order
λ-search (an ordinary ladder) cannot kill t he white stone in figure 3. If all the moves
of these faili ng ladders (of which one of them is shown in figure 2) are recorded (cir-
cles), and all points adjacent to the circles (liberties of the shadow stones) are added
as well (squares), the result is seen in figure 13:10

Fig. 13. Relevancy-zone for black? Fig. 14. Is white a dead after black 1?

Definition 3. A shadow stone corresponding to a λn-tree is a stone that is played in
this λn-tree, or in one of the lower-order λ-trees called from the λn-tree.

Comparing figures 6 and 13, it is seen that the R-zone of f igure 6 is contained within
the R*-zone of f igure 13. This seems simple enough, reducing the number of points
considered for finding the attacker's λ2-moves from 355 to 36. Using this methodo-
logy, a point around e in figure 3 will  never be considered as a λ2-move, whereas a
point such as f would. There is a problem, however, namely what to do with so-called
inversions?

                                                          
10 Note that in this and the following examples, there is no limit on the maximal search depth.

With limited search depth, the relevancy zones would be smaller. Also, note in figure 13 that
the liberties of the white ladder-breaker are added (more on this in section 4.2 on inversions).
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4.2  Inversions

In Go block tactics, the attacker tries to confine the defender, whereas the defender
tries to break loose or make two eyes. The defender can break loose by either mov-
ing/extending out, or trying to capture some of the attacker's surrounding stones. We
denote the defender's trying to catch some attacker's stones an inversion, since the
roles are switched.

To yield an example, we consider the defender disturbing/averting the threat of a
loose ladder (λ2-tree) by means of an (inverted) ordinary ladder (λ1-tree). An example
is shown in figure 14.

Black has just played 1, a λ3-move threatening to kill white a in a λ2-tree (loose
ladder). Black 1 is a standard tesuji for capturing a block like a, but before dooming a
dead, we need to consider the fact that the surrounding black block b is vulnerable
due to a limited number of liberties. Hence, the question is: what are the possible
white λ3-moves following black 1?

In order to answer this, we play out the threatened λ2-tree, killi ng white. This is
shown in figure 15.11 These moves can also be found as circles in figure 16.12 Since
the black block b1 has three liberties only, these liberties are also added to the R*-
zone. The general rule for doing this makes use of the concept of quasi-liberties, de-
fined below.

    

Fig. 15. Kill ing white in a λ2 Fig. 16. Relevancy-zone Fig. 17. White λ3-moves
for white

Definition 4. A quasi-liberty corresponding to a λn-tree is a liberty that is not coinci-
dent with a shadow stone corresponding to the λn-tree. (The number of quasi-liberties
will always be ≤ the number of real li berties)

Example: In figure 16, the block b1 has 3 quasi-liberties (coinciding with its real
liberties since none of the points surrounding b1 are circles (shadow stones)). The
blocks b2 and b3 have 3 and 2 quasi-liberties, respectively.

                                                          
11 The sequence in figure 15 contains both λ2-, λ1- and λ0-moves (black 1 is a λ2-move, black 3

is a λ1-move, and black 5 is a λ0-move), since all moves in any lower-order λ-tree are "re-
corded" to yield the shadow stones.

12 The reason why there are 8 circled moves in figure 16 compared to the 5 shown moves in
figure 15 is that the shadow stones in figure 16 (circled moves) also contain white moves
played at the three extra points. These moves are (non-working) white escape-attempts.
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Using the concept of quasi-liberties, the inversion rule can be stated:

Inversion rule: Consider a λa

n-tree with value 1 or 0. Call the defender's block a 0-
surrounding block. Now, repeat the following for m = 1, 2, 3, … , ∞: Find all blocks
of opposite colour touching the already found (m–1)-surrounding block(s). Of these
new potential m-surrounding blocks, only keep those that have not been found already
for smaller m, and for which the following is observed: q < n – m + 3, where q is the
number of quasi-liberties of the block.

Given this, the R*-zone corresponding to the λa

n-tree can now be defined. First, take
the shadow stones and points adjacent to the shadow stones. Next, if λa

n = 1, all quasi-
liberties of all surrounding blocks from the above list of the same colour as the
attacker are added to the R*-zone. Conversely, if λa

n = 0, all quasi-liberties of all sur-
rounding blocks of the opposite colour of the attacker are added to the R*-zone.

Example: All attacker's blocks touching the defender's block and obeying the
equality q < n – m + 3 are called 1-surrounding. In the example, we are analyzing the
relevancy zone of a λa

2-tree with value 1 (in order to find λ3-moves), and hence n = 2.
Thus, in order for black blocks to be 1-surrounding, they must have fewer than n – m
+ 3 = 2 – 1 + 3 = 4 quasi-liberties. In figure 16, it is seen that b1 has 3 quasi-liberties,
whereas b2 and b3 have 3 and 2 quasi-liberties, respectively. Hence, both b1, b2 and
b3 are 1-surrouding blocks.

The blocks b1, b2 and b3 touch three white blocks, a already being in the list, and
c1 and c2 being new. In order for a white block to be 2-surrounding, it must have less
than n – m + 3 = 2 – 2 + 3 = 3 quasi-liberties. Since c1 and c2 have 3 and 4 quasi-li -
berties, respectively, these blocks are not 2-surrounding. As there are no 2-surround-
ing blocks, the search for m-surrounding blocks is terminated, not worrying about the
potential 3-surrounding blocks d1 and d2 (even if they had had less than 2 quasi-lib-
erties).

The true R-zone corresponding to the λa

2 -tree is shown in figure 17, where it is seen
that only two white moves actually disturb/avert the threatened λa

2-tree of figure 15
(all other white moves fail to disturb figure 15). The two triangled white moves dis-
turb the λa

2-tree because they render possible the inverted ladder shown in figure 19 –
an inverted ladder black has no way of escaping.

Fig. 18. Does white 2 save white a?
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Fig. 19. The threatening inverted ladder  Fig. 20. Zone made by the inversion rule

Now consider figure 18, where white has just played the λ3-move white 2, disturbing
the threatened λa

2-tree of figure 15. To find candidates for the next black λ3-move, the
now faili ng λa

2-tree is played out, and all those λ2-moves (and the λ1- and λ0-moves
generating those λ2-moves) are recorded. The shadow of these stones is shown as
circles in figure 20.

Using the inversion rule, the relevancy zone would look like figure 20. This seems
to be a safe bet for a R*-zone containing the true R-zone of black disturbance-moves
(black λ3-moves following white 2 in figure 18). However, the inversion rule is not
100% safe, which is seen by the fact that a black stone at g is actually a disturbance
threatening λa

2 = 1. This is so, because after black g, the inverted ladder shown in fig-
ure 19 no longer works – and the example is constructed in such a way that after black
g there is no other ladder that works for white. Thus, black g should in principle be
counted among the possible black λ3-moves in this position, and thus be part of the
R*-zone.

Obviously, g is not the best move for black to play in order to fend off the threat-
ened ladder of f igure 19, but we are interested in ensuring that all  possible black λ3-
moves are generated, leaving it up to some successive forward-pruning heuristic to
cut some of them off afterwards, if they can safely be judged inferior to other black
moves. But at least we should know that moves like black g exist.

A much better black λ3-move would e.g. be a move at 1 in figure 19. After such a
move, white is close to being dead, since white will soon run out of (inverted) ladder-
threats on the black block b1. But the interesting thing about a black move at g is that
it encloses the territory below g at the same time as threatening to kill a. Hence, black
g could be used as a forcing territory-enclosing move or as a ko threat.13

The question is how the R*-zone catches a move like black g? The answer is that
the white block e is actually surrounding the black block b1 in much the same way as

                                                          
13 Interestingly, a white λ3-answer to a possible black λ3-move at g in figure 20 could be a move

directly to the left of or below g (giving an atari on the black stone at g). This would be yet
another inversion.
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c1, c2 and c3, even though it is, of course, much more indirectly. It is possible to for-
malize this with help of additional concepts of so-called quasi-surroundedness (white
e quasi-surrounding b1) and so-called shadow blocks, but space does not permit going
further into this here.14

Apart from the remaining problems of the inversion rule, however, this rule at least
seems to contain some of the right abstract concepts for the construction of reliable
relevancy-zones, even though it may still overlook a few exotic moves. Such exotic
moves are typically easy for the opponent to fend off and usually not relevant to the
solution of the problem.15

More work needs to be done in this field, and until some algorithm for the con-
struction of R*-zones can be proved to contain the true R-zones in all cases of Go
block tactics, an algorithm like the proposed inversion rule would just have to be seen
as providing some useful foundations for the implementation of abstract topological
knowledge regarding open-space Go block tactics. Perhaps some kind of automated
theorem-proving could be of use here; cf. the interesting approach in [4]. And for
another example ill ustrating the inversion rule, the reader is referred to [11].

5  Conclusions and Scope for Fur ther Work

To conclude briefly, the λ-search method seems to be very well suited for obtaining
well -defined goals in two-player board games like chess or Go, provided that passing
is allowed or zugzwang is not a motive. As shown in section 2, λ-search offers the
theorems of confidence and convergence, and the algorithm is simple and requires
negligible working memory in itself. As section 3 indicates, in many cases λ-search is
capable of offering a relative search space reduction over standard alpha-beta compa-
rable to the relative reduction of standard alpha-beta over minimax. In addition, the λ-
search method often eases the implementation of abstract game-specific knowledge,
and λ-search can be combined with any search method for searching the λ-trees, in-
cluding proof-number search (thus rendering possible an easy combination of null -
moves and proof-numbers).

In Go, the λ-search algorithm is capable of solving open-space tactical problems
(tesuji ) from e.g. volume 4 of Graded Go Problems [6] with relative ease.16 Regard-
ing the scope for further work, the following points could be considered:

                                                          
14 With these additional concepts it is also possible to justify the inclusion of the liberties of the

white ladder-breaker in figure 13 in the R*-zone.
15 As noted before, such moves could still be relevant as forcing moves or ko threats. Also, in

the context of f inding double threats, such moves can be highly interesting.
16 As an example, the following numbers have been tried out successfully: 2, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 41, 103, 104, 105, 107, 108, 110, 113. The program uses iterative
deepening alpha-beta with transposition tables for searching the λ-trees, together with the
inversion rule described in section 4. In addition, moves in all λ-trees are ordered by counting
the number of liberties and meta-liberties (points adjacent to liberties) of the attacked block
after each possible move (minimizing these if the attacker moves, and maximizing these if the
defender moves, and also prioritizing moves with low Manhattan distance to the attacked
block).
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Generally:
• Can the algorithm be taught to find at least one of two (or more) goals by means of

identifying double-threat-moves?
• Which kinds of search techniques are well -suited for λ-trees? How to manage the

use of transposition tables in the different orders of λ-trees? Which kinds of move-
ordering techniques could be useful (iterative deepening with transposition tables,
history heuristic etc.)? Use of proof-number search to solve the λ-trees?

• Investigate a large number of realistic game-problems with λ-search and other
search methods, in order to provide some real-world statistics on the eff iciency of
the different approaches.

• Can zugzwang-motives somehow be incorporated into λ-search?
• How to implement parallelism (multiple processors) most conveniently into λ-

search?

Go-specific
• Go block tactics: Solving inversions (cf. section 4.2) as independent sub-problems

(local games) if possible. Perhaps some of the tools described in [8] could be of
use. Try to reduce the size of the R*-zone as much as possible by means of solving
all λn-trees two times – the second time using the best moves (stored in a transpo-
sition table) from the first search. Try to classify certain kinds of  λ2-moves, see
e.g. [7].

• Implementing abstract knowledge regarding tsume-go, semeai and connection
problems in the context of the λ-search methodology.

• Using λ-search to search for eyes or Benson-immortality, see [3] and [9].
• How to handle seki or ko?
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Appendix: λλ-search ill ustrated on Chess

Consider the mating problem in figure A1. In chess mating problems, a λ1-move is a
check, but it is easily seen that the black king cannot be mated with a sequence of
white check-moves. Hence, in this problem, λa

1 = 0. However, the black king can be
mated in a λ2-tree, as shown below.

Fig. A1. How to mate black? Fig. A2. Black λ2-move Fig. A3. White λ2-moves
White λ2-moves following Re2-e1 following Kg6-h5

In figure A1, all the white λ2-moves (moves threatening a forced mating check-se-
quence) are shown. Of these 7 white moves, three of them are direct checks, in con-
trast to the four other more "quiet" moves (Re2-e3, Re2-e1, Rf2-f3 and Rf2-f1). For
instance, after white Re2-e1, if black passes, a mate results from Re1-g1+, Kg6-
h7/h6/h5, Rf2-h2++. Now, consider Re2-e1. As shown in figure A2, there is only one
black λ2-move averting the threatened mating check-sequence: Kg6-h5. After Kg6-h5,
white has no mating check-sequence. His best try would be Re1-h1+, Kh5-g4, Rh1-
g1+, but it peters out after Kg4-h3. In figure A3, the 6 white λ2-moves following Kg6-
h5 are shown. Of these, four are direct checks, while the more quiet Re1-g1 and Rf2-
g2 threaten mating check-sequences. After either Re1-g1 (or Rf2-g2), black cannot
avoid a mating check-sequence no matter where he moves, implying that there are no
λ2-moves following Re1-g1 (or Rf2-g2). Hence black can be declared dead.


