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Abstract. This paper proposes a new method for searching two-vaued (binary)
gametreesin games like chessor Go. Lambda-search uses null-moves together
with different orders of threa-sequences (so-cdled lambda-trees), focusing the
seach onthreas and threa-aversions, but still guaranteeng to find the mini-
max value (provided that the game-rules alow passng or zugzwang is not a
motive). Using negligible working memory in itself, the method seems able to
offer alarge relative reduction in seach spaceover standard alpha-beta mmpa-
rable to the relative reduction in seach space of alpha-beta over minimax,
among dher things depending upon haw non-uniform the seach tree is.
Lambda-seach is compared to other resembling approaches, such as null-move
pruning and proof-number seach, and it is explained how the @ncept and
context of different orders of lambda-trees may ease and inspire the implemen-
tation d abstrad game-spedfic knowledge. This is illustrated on open-space
Go block tadics, distinguishing between different orders of ladders, and offe-
ring some posshle grounding work regarding an abstrad formalization o the
concept of relevancy-zones (zones outside of which added stones of any colour
canna change the status of the given problem).

Keywords: binary tree seach, threa-sequences, null-moves, proof-number
seach, abstrad game-knowledge, Go hlock tadics

1 Introduction

A-seach is a general seach method for two-valued (binary) goal-seach, being in-
spired by the so-cdled null-move pruning heuristic known from computer chess but
used in a different and much more well-defined way, operating with dred threds,
threas of forced threa-sequences, and so on.

To gve apreliminary ideaof what A-search is abou, consider the goal of mating in
chess A dired threa onthe king is cdled a check and we cdl a sequence of chedks
that ends up mating the king a forced mating check-sequence. However, a threat of
such a forced mating chedk-sequenceis not necessarily a dnedk-move itself, and such



ametathrea — being d a second order compared to the first-order chedk movesin the
chedk-sequence — can be amore quiet, enclosing move.!

Similarly, in Go, adired threa on ablock of conneded stonesis cdled an atari. A
forced atari-sequence resulting in the cpture of the block is cdled a working ladder
(Japanese: shicho). Hence, in this context, a (meta-)threa of a forced threa-sequence
would be aladder-threa, which does not have to be an atari itself. Consider figure 1:
Bladk canna capture the white stone a in a ladder, because of the ladder-block (the
other white stone). An example of such a failed attempt is siown in figure 2. Now,
providing that blad gets a free move (a move that is answered with a passby white),
there ae anumber of waysin which blad can make the ladder work. One of the pos-
sibiliti es could be playing afreemove & cin figure 3. Thisthreaens the ladder shown
in figure 4. Another possbility could be playing at d in figure 3, thredening the lad-
der shown in figure 5.
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Fig. 4. Working ladder Fig. 5. Working ladder
(A\'=1) after black ¢ (A\'=1) after black d

The moves ¢ and d in figure 3 are thus more indired threas on the white stone a,
compared to a dired (first-order) atari, and this possble generalizaion of the concept
of thredsis the main theme of the present paper.

1 Note: for readers not famili ar with Go, the gpendix contains a chessexample similar to the
Go-example given below. In chess goals other than mating could be, for instance, trapping
the opponent's queen, creding a passed pawn, or promoting a pawn.



To introduce the terminology used in this paper, we denote adired thred-sequence a
N'-tree consisting solely of A-moves (chekdataris for the attacker and moves
averting these for the defender). The A'-tree is a standard seach tree solvable by
means of any minimax seach technique, with value 1 (successfor the atader) or 0
(successfor the defender).

At the next level of abstradion, a A>>move for the atadker is a move that threatens
a N'-treewith value 1, if the atadker is allowed to move again. Figure 6 depicts all
possble blad A*-moves given unlimited seach depth; i.e., al blad moves threaen-
ing a working ladder (or a dired cgpture; hence the two atari-moves on white a are
also A-moves) if left unanswered. If e.g. 1 in figure 7 (= ¢ in figure 3) is chosen,
blac threaens the ladder depicted in figure 4. Figure 7 then shows all possble white
moves averting that thred. In the general A*treg these two white moves in Figure 7
are hence A>-children of blad 1, and in figure 8, the two blac moves are A*children
of white 2 (again reviving the ladder-threa).

Fig. 6. Bladk A*-moves Fig. 7. White A>moves Fig. 8. Blad A*moves
tokill a after bladk 1 after white 2

In this way, a A*tree ca be built out of A>moves, these being threds of threa-se-
guences (ladder-threas) for the attadker, and aversions of threa-sequences (ladder-
bre&kers) for the defender.? Seethe gpendix, figures A1-A3, for a similar chessex-
ample.

In the context of Go block tadics, aA*tree @n be interpreted as a net or loose lad-
der (Japanese: geta or yurumi shicho), but the order of A can easily be > 2. For in-
stance, loose loose ladders (A\*-trees) are quite cmmon in open-space Go block tac
tics, the A>-trees being built up d A°-moves, originating from A*trees. Tsume-go
problems (enclosed life/deah problems) or semead (race-to-cgpture) usualy involves
high-order A"-trees (mostly n = 5), and connedion problems (trying to conned two
blocks of stones) often feaures high A-orders, too. For example, in figure 9, white a
can bekilled in a\'-tree(the solution is blac b, 21 plies’half-moves), whereas in fig-

2 As most readers with a basic knowledge of Go would know, the best black A>moveis b in
figure 3, after which there ae no white A>moves. Another way of stating this is that after
black b, there is no way for white to avoid being kill ed in a subsequent ladder (A'-treg), and so
white can be dedared urconditionally dead.



ure 10, black a and b can be mnneded into one block in a A’-tree (the solution is
blak c or d, 15 dies).?

Fig. 9. Bladk to kill whitea (\') Fig. 10. Blad to conned a and b (A°)

Asit is diown in sedion 3 compared to standard a pha-beta, A-search can dften yield
large reductions in the number of positions generated in order to solve agiven prob-
lem, espedally if the seach treeis highly non-uniform in a way exploitable by A-
seach. Hence, the A-search methoddogy could probably prove useful for goal-search
in almost any two-player, full -information, deterministic zeo-sum game.*

The point about A-seach is that in each A-treg, al legal moves are not just being
blindy generated and gdoughed through, but instead the seach focuses on those
making and averting (more or lessdired) threas. This implicit move-ordering direds
the search towards its goal, and even though the A-search methodology does nat in it-
self contain any knowledge of the concrete game-problem analyzed, A-moves often
seam to have & least some minimum of meaning or purpose (cf. figures 6-8, or fig-
ures A1-A3in the gpendix), in contrast to the often random-looking move sequences
generated by no-knowledge dpha-beta seach.

In addition to this implicit threa-based move-ordering, the A-search approach can
often ease and inspire the implementation of abstrad game-spedfic knowledge. For
instance, regarding A'-moves in chess mating problems, there are only three ways of
averting a chedk (capturing the threaening pece putting a piece in between, or
moving the king). Similarly, regarding A'-moves in Go block tadics (ladders), the d-
tacker must always play on one of the defender's liberties, whereas the defender must
always play on his remaining liberty, or cgpture asurrounding Hock. Sedion 4 de-
scribes an attempt at formulating some abstrad/topdogicd Go-tadica knowledge re-
garding general A'-trees, these astrad rules relying bdh upa the value of the A-or-
der n, and oninformation generated during seach of lower-order A-trees.

3 Note generally that if A"= 1, the dtadker has to spend n + 1 extra moves (moves that can be
answered by a pasdtenuki by the defender) in order to "exeaute" the goal. Hence, in figure 9,
white a can be mncaved of as having n + 1 = 8 effedive liberties, instead of only the 5
red/visible ones. If the blad block surrounding white was vulnerable, such knowledge would
be aqucia in for instance semea problems (cf. [10Q]), or regarding the difficult problem of
"opening up" tsume-go problems (cf. [12]).

4 Provided that the game-rules allow passing, or zugzwang (move-compulsion) is not always a
motive for obtaining goals.



2 Formalizing the A-search Method

In this edion, the A-seach method is formalized in its most general form, not tied to
the mntext of any spedfic game. The A-treeis defined as foll ows:

Definition 1: A \-treeis a seach treefor trying to achieve asingle well-defined gaal,
the seach tree onsisting solely of A"-moves (defined in definition 2), and a A,-tree
being a\-treewhere the dtadker moves first. The minimax value of a A"-treeis either
1 (successfor the dtadker) or 0 (successfor the defender).® A noceis aled (terminal
nock) if the node has no children because there ae no legal A-moves following it. If
thisis o, the value of the led is 1 if the defender isto move, and O if the datadker isto
move.

The A’-treeis particularly simple: A.° = 1 if the dtader's goal can be obtained di-
redly by at least one of the attadker's legal moves, and A\,” = 0 otherwise.

Definition 2: A A\"-move is a move with the following charaderistics. If the attacker
isto move, it isamove that implies— if the defender passes — that there exists at least
one subsequent A -treewith value 1, 0 < i < n-1. If the defender is to move, it is a
move that implies that there does not exist any subsequent A_-tree with value 1, 0 < i
<n-1.

Example (Go block tadics): Regarding the mnstruction of a A*-tree, cf. figure 3.
Here, ablac play at c is a A>move. After ¢, provided that white passes, A.° = 0 (the
block cannot be captured diredly), but A" = 1 (the block can be captured in a ladder,
cf. figure 4).

After black playsthis A>move & c, we have the situation in figure 7. Here, a white
move & any of the two marked pdnts is a A*-child of the black A*move, since dter
any of these two white moves, A.” = A, = 0 (black canna follow up with reither a di-
red cgpture nor aworking ladder).

The A-method can be ill ustrated as in figure 11. In this figure, black a is a A™-move,
becaise — if white passes — it can be followed up with a A\ " -treewith value 1, cf. the
small treeto the left. Considering the white move b, thisis likewise aA™move, since
it is not followed by a A"-treewith value 1, cf. the small treeto the right.s Other le-
gal bladk and white moves are pruned doff, and hencethe A"-tree generally has a much
smaller average branching fador than the full seach tree. Note that in al the three
depicted A-trees the dtader movesfirst, and nde dso that the dgorithm works recur-
sively in the "horizontal" diredion, so that the moves in the small A™"-trees to the |eft
and right are in turn generated by \"*-trees, and so on downwards, ultimatively end-
ing upwith \’-trees. Note finally that a A" '-treegenerally contains much fewer nodes

5 The terms "attacker" and "defender" are abitrary and could just as well be "left" and "right".
For instance, in Go, "attadking" could just as well be trying to conned two blocks of stones,
and "defending"” trying to keep them disconneded.

8 In fad, small A"*trees, A" *-trees, and so on, should also be included at the left and right (cf.
definition 2), but these ae omitted here for the sake of clarity.



white pass

A=1

Fig. 11. The A'-tree

than a A"-tree Having made the above definitions, it is time to introduce an important
theorem:

Theorem 1 (confidence): If a A,-tree seach returns the value 1 (successfor the -
tacker), thisis the minimax value of the position —the attader’s goal can be ahieved
with absolute mnfidence

Proof: For a A-tree to return the value 1, the dtader must in ead variation be
able to force the defender into situations where he has no A"-moves (cf. definition 1).
The defender not having any A\"-move means that no matter how the defender plays,
the atadker can follow up with alower-order A-treewith value 1: A/=1,0< i < n—
1. By the same reasoning as before this in turn means that the datadker can force the
defender into situations where he has no A'-moves. By reaursion, this argument can be
repeded for lower and lower orders of A-trees, until we (in at most n steps) end up

with aA*-tree And if a) -treehas value 1, the goal is obtained diredly (cf. definition
1).0

This theorem is crucia for establishing the reliability of A-seach. As theorem 1
shows, if a A, -treereturns the value 1, the attadker’s siccessis a proven successno
matter how the defender tries to refute it, so if a A-seach finds awin for the atadker,
one car have absolute monfidenceinit.

Theorem 1 is obviously nat symmetric. If a A -treeseach returns the value 0, this
does nat entail that there could not be aforced attadker's win in the full game-tree. It
only means that the defender canna lose by means of attadker's A"-moves, but there
might very well be aforced win for the dtadker lyingin wait in trees of order n+1 or
higher.

Example (Go block tadics): If black plays aworking ladder (A\'=1), heis certain to
kill t he white block: the defender cannot avoid being kill ed. But the other way round,



if a white block canna be killed in a ladder, this does not, of course, imply that it
could not, for instance, bekill ed in aloose ladder.

Seen in the light of the above, given some spedfic goal for the dtadker to achieve,
and provided that the dtadker cannot achieve the goal diredly within the first move
(A.°= 0), the strategy will be to first try out a A -tree. If A' = 1, we ae finished, cf.
theorem 1. If A.' = 0, we continue with a A *-search, and so on until time runs out. If
we end yp with A" = 0 for some value of n, we canot say anything authoritative on
the status of the problem, other than that the defender survivesa A -attack.

The next question is what happens asymptoticaly as A™-trees of higher and Hgher
order get seached? Provided that we know a priori that the atadker’s goal can be
readied within at most d plies by ogimal play (d being an odd number), can we be
sure that the value of A" will convergeto 1for somen, as n tends towards infinity?

If the game-rules al ow passng, the answer isyes, andin that case it is passble to
prove that n < (d-1)/2, as hown in theorem 2 below. First alemma:

Lemma 1 Consider a full seach tree onsisting o all legal moves for both players.
In this sach tree consider a node x where the dtader is on the move. Assume that
we ae not considering the root node (move #1), but some dtadker's move deeper
down the tree (i.e., some odd move number > 3). Consider the sub-tree unfolding
from node x. For the atadker to be able to forcethe defender into a A -treewith value
1 expanding from node X, the atacker must have been threatening A" = 1 when he
was on the move last time. Had he not been threaening A" = 1, the defender could
have pas=ed, after which (cf. definition 2 the value of a subsequent A,-tree would
have been 0.

Example (Go block tadics): in order to be ale to force the defender into aworking
ladder (A" = 1), the preceding attacker's move must have been a ladder-thred. If this
had nd been s, the defender could have passed, and the ladder would still not work.

Theorem 2 (convergence). Consider again the full seach tree onsisting o all legal
moves for bath players. Assume that we know a priori that there exists a forced win
for the dtadker in at most d plies, d being some odd number > 1. Consider anocey at
depth d — 1 (with the atadker to move) after which the forced win is exeauted at depth
d. This means that the tree expanding from y is a A -treewith value 1. Using Lemma
1, this again means that the atader must have been threatening A.” = 1 when he
played last time (i.e., played amove & depth d — 2). Threaening A.° = 1 isthe same &
playing aA'-move; hence the dtacker must have played aA*-move & depth d — 2.

In order for the dtadker to be able to force the defender into this A'-move & depth
d— 2, it must have been part of aA_-treewith value 1. The first attacker's move in this
tree ca be & any depth d, where1 <d, <d-2. If d = 1, we are finished (hence
establishingn = 1). Else, if 3< d, < d -2, in order to force the defender into this A
tree with value 1, the dtacker must have been threaening A,' = 1 (= playing a \*-
move) at somedepthd,, wherel<d,<d -2

This goes on recursively for A-trees of higher and higher order (ead time moving
at least two plies upwards in the full search treé), so in the worst case we end upwith
atreeof order n = (d—1)/2. This reasoning can be repeaed for al nodesy at depth d —



1 after which the forced win is executed at depth d, and henceit is proved that n < (d—
/2.0
) Example (Go block tadics): Assume that we know a priori that the atadker can kill

the defender in at most 5 plies. The dtadker's move #5 must have been the apture
(taking the stones off the board), so the atadker's move #3 must have been an atari
(A-move) — otherwise the defender could have passed, and the stones could na have
been taken off the board at move #5. Regarding the dtadcer's move #1, it can have
been a(nother) A'-move if the whole killi ng sequenceis aworking ladder (A*-treewith
value 1). Otherwise, the first attader's move could have been a A*move (loose ladder
move), threaening A, = 1 (an ordinary ladder). But if the atader's move #1 had not
been either a A'-move or a A>move, the defender could have passed at move #2, and
there would have been no way for the dtadker to establish a working ladder (A\*-tre€
at move #3, and hence no way to kill the defender at move #5. Thus, if d =5, the A-
seach can only be of order 1 or 2, meaning that if d = 5 and a A*search returns value
0, the problem canna: be solved in 5 plies. This corresponds to the inequality, since
the formula states that n < (d-1)/2 = 2.

Considering games like chesswhere passng is not al owed, theorem 2 dces not hold,
since the aility to pass is a prerequisite for Lemma 1. However, apart from
zugzwang-motives (e.g. in late dhessendgames), thisis not a problem if the defender
has aways at least some harmlesgnon-suicidal move to play instead of a passmove.
Hence, for pradicd purposes, theorem 2 also applies to gaals such as eg. mating in
middle-game chesspositions. And it shoud be noted that theorem 1 applies whether
passngisalowed or nat.

Thus, theorems 1 and 2 show that A-search is not to be interpreted as sme heuris-
tic forward-pruning tedhnique, since a A-seach —in the worst case seached to A-or-
der n = (d-1)/2 — returns the minimax vaue, provided that passng is alowed o
Zugzwang is not a motive. Some pseudo-code @ntaining the A-search methodology
can befoundin [11].

3 Comparing A-search with other Search M ethods

Having dfered the proofs of confidence and convergence, the question is how effec

tive the A-seach method redly is compared to aher techniques, such as, e.g., stan-
dard alpha-beta, alpha-betawith nul-move-pruning, or proof-number seach?

3.1 Standard alpha-beta

Given some simplifying assumptionsiit is possble to indicae the dfedivenessof A-
seach compared to standard alpha-beta. Below, it is siown that this effediveness
generally depends on the branching fador of the A-seach trees compared to the
branching fador of the full search treg combined with the A-order n.

Consider a general A-seach tree of some order n, with the attacker moving first,
and asaume that an attadker's win exists in at most d plies (d being uneven). Also as-



sume that passngis allowed or zugzwang is not a motive. We will now try to court
the total number of paositions generated in arder to search such a\™-treg including the
positions generated in the lower-order A-trees. It is asaumed that minimax is used in
both the A-treg and as the standard reference dgorithm, for reasons to be explained.

Asaime furthermore that B isthe average branching facor of the full search tree(=
the number of legal movesin ead pasition: in chess around 30-40, andin Go around
200-250). Asaume furthermore that al A-trees have the same average branching fac
tor, b (b being < B). In order to generate the dtadker's moves at depth 1in the A"-treg
all legal attadker's moves must be tried out, to seewhether or not they can be followed
by some N-tree(i < n—1) with value 1 (cf. a in figure 11). This amounts to Bn A'-tree
seaches (the A'-trees being f order i =0, 1, ..., n-1). And at depth 2in the A'-tree
for eath of the defender's \"-nodes, all | egal defender's moves must be tried out, to see
whether or not they are followed by A'-trees (i < n—1) with value O (cf. b in figure 11).
This amourtsto atotal of bBn A'-treeseaches (the A'-trees being o order i =0, 1, ...,
n-1).

Hence in order to generate dl A™-moves at depths 1 and 2, corresponding to the
three bladk moves and the nine white answers in the A"-treein figure 11, (1+b)Bn
number of A'-trees must be analyzed (the A-trees being of order i = 0, 1, ..., n-1), all
of them to depth d—2. By a similar argument, the A"-moves at depths 3 and 4 in the A"~
treerequire that (b’+b*)Bn number of A'-trees (the A'-trees being of order i = 0, 1, ...,
n—1) are seached to depth d—4, and so on.

Now the question is how deeply the A™-treeneeds to be searched? This depends on
circumstances, and the depth will generally be between 2 and (d-1) — 2(n-1) plies. To
simplify, we assume the worst case, namely that the A"-treeneeds to be seached to its
maximum depth, i.e., (d-1) — 2(n-1) plies.

The &ove reasoning leads to the reaursive dgorithm shown in figure 12 —stated in
pseudo-code — for the total number of positions generated in order to seach a A"-tree
with search depth d.

The reaursion ends with the number of generated moves in the A\°-treg since the
algorithm knows that a A*-treedemands B positions to be evaluated. For given values
of B and b, the @&ove-mentioned reaursive formula is thus cgpable of estimating the
total number of positions generated in a\"-search to depth d, where dl the \"-trees are
seached by means of minimax. This estimate can be mmpared to (B*'-1)/ (B-1),
being the estimated total humber of positions generated in a minimax-seach. Thus,
for given B, b, n and d, we define the reduction fador asfollows: r = [(B**-1)/(B-1)] /
lambdaM ovesGenerated(n, d).
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| ambdaMovesGener at ed(n, d) {
if(n==0)return B;
sun¥0;
for(i=2;i<=(d-1)-2*(n-1);i=i+2) {
for(j=0;j<=n-1;j=j+1) {
sumesumt( b** (i -2) +b** (i -1))*B*| anbdaMovesGenerated(j,d-i);
}
}

return sum

}

Fig. 12. Pseudo-code for counting the total number of positions generated by a A"-seach to
depth d.

The reader might now ask why apha-betais not used instead of minimax? Thisis
only because asuming minimax makes the reduction fador easier to compute — the
point being that using alpha-beta (or any ather search technique) instead of minimax
would na alter the reduction fador, asauming that alpha-beta (or any other seach
technique) works equally efficiently in the A-trees and in the standard (full) seach
tree The dficiency of apha-beta-pruning thus cancds out in the numerator and de-
nominator of the reduction fador, so that the reduction factor can also be interpreted
as the dficiency of the A-search technique (using standard alpha-beta in the A-trees)
over standard alpha-beta.

To provide an ideaof the magnitude of the reduction fador, we show two tables
below: namely (b, B) = (4, 40) and (b, B) = (8, 40), cdculated by means of the dgo-
rithm in figure 12.

Table 1. Reduction fador, A-seach relative to standard alpha-beta, (b, B) = (4, 40)

n=1 n=2 n=3 n=4 n=5
d=3 8
d=5 772 65
d=7 76.942 3.174 482
d=9 7.692.425 209.432 16.192 3.328
d=11 769.231.503 15.625.505 812.550 88.201 21.791

Table 2. Reduction fador, A-seach relative to standard alpha-beta, (b, B) = (8, 40)

n=1 n=2 n=3 n=4 n=5
d=3 4,6
d=5 112 20
d=7 2.804 251 76
d=9 70112 4173 666 254
d=11 1.752.804 78.158 8.530 1.810 781
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In order to have something to compare with, the reduction fador of standard alpha-
beta relative to minimax is siown in the table below.”

Table 3. Reduction fador, standard alpha-beta relative to minimax, B = 40

good average bad
move order move-order move-order
d=3 15 3,9 1,8
d=5 60 7,8 2,4
d=7 238 15,6 3,1
d=9 952 31,2 472
d=11 3.810 62,4 5,6

Tables 1 and 2show that the largest reductions are found for n =1, i.e., if the problem
can be solved by means of a number of dired attadker's threds (chessmating: checks
— Go block tadics. ataris). For growing depth, this renders a huge reduction fador
relative to standard alpha-beta, both if the threas and threa-aversions on average
make up 10% of the legal moves (table 1), or 20% (table 2). This corresponds to the
full search treebeing highly non-uniform in a way exploitable by A-search. But even
for more "saturated” problems; i.e., problems needing a larger value of n, the reduc-
tion fador is gill i mpressve. For instance, with b/B being 20% as in table 2, a A*-
seach to a depth of 5 plies would till — onaverage — require only about 1/20 of the
positions generated with standard alpha-beta to depth 5, this reduction fador being
comparable to the reduction fador of good a average move-ordering al pha-beta over
minimax at depth 5 (cf. table 3).8

As it is e, the relative reduction in search spaceby using A-seach instead of
standard alphe-beta is comparable to the relative reduction in seach spaceby using
apha-beta instead of minimax, espedally for low saturation problems with n < (d—
1)/2. It is possble to prove that — for large B and b, and for n relatively small
compared to (d-1)/2 —the reduction fador, r, can be gproximated by:

Bﬁ -n-1

n-1

T M =yl &)

In that case, the reduction fador depends on the size of B compared to b in the (d—n—
1)'th power, divided by a binomia coefficient. A possble interpretation: Asume that
we had some divine knowledge, knowing in each pasition d the full seach tree

7 Note: Inthe caculation o these reduction fadtorsit is assumed that the best attadker's moveis
found after 10 tries (good), 20 tries (average), or 30 tries (bad). So for instance, for t = 3, the
reduction for good moveordering is cdculated as follows: (1+40+40°+40°)/-
(1+10+10-40+10-40-10). It should also be noted that the move-ordering can often be improved
upon in anumber of ways, but here we focus on standard alpha-beta only.

8 This could, for instance, be amodel of those mate-in-two problems in chesswhere the first at-
tacker's move is not a ek (whereas the next is the chedkmate). In that case — a A-tree
seached to depth 5 —a reduction fador of about 20 would be expeded. Alternatively, if the
first attadker's move is a chedk (and the next the dheckmate) — a A'-tree— the reduction facor
would be expeded to be dout 112.
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which b out of the total of B legal moves contain the best move (thus in each pasition
having orly to consider b instead of B moves). In that case, the reduction fador would
ber = [(B*'-1)/(B-1)] / [(b"*-1)/(b-1)] = (B/b)". However, since we do na have ae
cessto such divine knowledge, lower-order A-trees have to be searched in order to
find the b interesting moves (this being more costly for higher n), explaining the bi-
nomial coefficient and the fad that the exponent is (d——1) rather than just d.

From the formula it is ®en that the aucial fador for the reduction fador is the
relativesizeof b in relationto B. Thus, we would exped similar reduction fadors (ta-
bleslike table 1 and 2) for (b, B) = (8,40) and, e.g., (b, B) = (50,250), whereas the re-
duction fadors for, eg., (b, B) = (8,250) would be much larger than for (b, B) =
(8,40). It should, however, be anphasized that al the above cdculations must be
taken with alarge pinch of salt, sincethe cdculations just yield some theoreticd and
not empiricd indications of the strength of A-seach over standard apha-beta. A more
authoritative estimate of the efficiency of A-seach would imply analyzing a large
number of redistic game-problems with dfferent search techniques, including A-
seach, thus being able to offer some red-world statistics on the relative merits of the
diff erent approaches.

3.2 Null-move Pruning

Alpha-beta augmented with nul-move pruning (see eg. [5] for an overview) might
seam similar to A-seach, but even though the underlying ideais quite similar, there
are anumber of important differences — apart from the fad that alpha-beta aigmented
with nul-move pruning can be diredly applied to non-binary seach trees (in contrast
to A-seach):®

First, in A-seach, only the defender makes null-moves, and A-search does not use
depth-reduction when searching the lower-order A-trees.

Seawnd a A"-seach controls the total number of admissble defender's null-moves
in any branch between some nocde and the roat, this number always being < n.
Knowing the concrete A-order of a problem (i.e, distinguishing clealy between dif-
ferent orders of threds) often eases the implementation o abstrad game-spedfic
knowledge.

Third, because null-move pruning operates with a depth reduction fador for
seaching the sub-treefollowing a null-move, an erroneous result might occasionaly
be returned. Null-move pruning with depth-reduction works extremely well in many
applicdions (for instance mmputer chesy, but it cannot offer the same asolute reli-
ability as A-seach (cf. the theorems of confidence and convergence).

9 The reader might ask whether A\-seach could somehow be used for non-binary seach trees?
A posshility would beto define the goa as follows: If aled-node has evaluation value larger
than some threshold, the value of the node is 1, otherwise 0. This way, A-seach could be used
in the same way as a null-window alpha-beta-seach. However, a general non-binary seach
treeis usudly very uniform (unless for instancein chess a hidden mate eists), implying n =
(d-1)/2 and hence alimited reduction fador (full "saturation"; cf. the diagonals of tables 1
and 2.
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Finally, A-seach is nat tied to any spedfic seach-technique for seaching the A-
trees, thus opening up the posshility of easily combining null-moves with for instance
proof number seach.

3.3 Proof-number Search

A recent and very popular search technique for searching two-valued seach trees is
the so-cdled proof-number search (see eg. [1] and[2]). Like A-seach, proof-number
seach exploits non-uniformity of the search treg trying to seach the thinner parts of
the seach tree first. Still, the differences between the two approaches $oud be
pointed out — apart from the fad that proof-number seach has no problems with
zugzwang-motives (in contrast to A-seach):

First, proof-number seach uses alarge working memory overheal, sincethe whole
(or at least much dof the) search tree needs to be stored in memory. In contrast, A-
seach using, for instance standard alpha-beta (without transposition tables etc.) as
the "seach-engine" has negligible working memory requirements.

Sewnd, it is not an easy task to incorporate transposition tables into proof-number
seach. In contrast, if alpha-betais used to seach the A-trees, transpaosition tables can
be used with aslittl e difficulty asin standard a pha-beta.

Third, A-seach depends on some tedhnique for searching the A-trees. But the con-
crete "seach-engine" could be aything aslongas it works — including proof-number
seach. Hence, proof-number search could be mmbined with A-seach with very littl e
effort (thus combining ndl-moves and proof-numbers), and even if some new power-
ful treeseaching technique shoud be invented in the future, A-search would most
likely benefit from it aswell.

Finally, and very importantly, as mentioned in the cmparison with nul-move
pruning, the posshility of distinguishing clealy between different orders of A -trees—
i.e, in ead position knowing the context of the value of n (and in addition: having ac
cessto information generated in lower-order A-trees) — often makes it easier to im-
plement abstrad game-spedfic knowledge. Additionally, the distinction between dif-
ferent orders of A-trees also makes it possble to concentrate time- and/or memory-
expensive techniques on the highest-order A-trees. Time-expensive techniques could
e.g. be daborate move-ordering schemes or pattern-matching, and memory-expensive
techniques could be the use of transposition tables, or the use of proof-number seach.

4 Implementing Abstract Game-K nowledge (Go Block Tactics)

4.1 The Relevancy-zone

One of the hardest problems in Go is how to limit the search in open-spaceGo block
tadics by means of charaderizing some a priori zone of relevance that is, some area
of the board ouside of which the addition d any number of black or white stonesin
any configuration cannat alter the status of the problem. For instance white a in fig-
ure 3 cannot be caight in anormal ladder, an example of which is siown in figure 2.
Adding afreebladk stone & e in figure 3 will not ater the status of the ladder (till
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not working), whereas a freebladk stone & e.g. f will make the ladder work. Actualy,
adding a free black stone & any of the marked points in figure 6 makes the ladder
work; hence ea of these paints is a possble A>>move (loose ladder move) for the
attadker.

However, it does not take long looking at figures 2 and 6, before one redizes that
the true relevancy-zone seen in figure 6 should be somehow derivable from or
dependent upon the "shadow" of the stones played in figure 2. So the ideais that the
true relevancy-zone, cdled the R-zone, is stuated inside another zone, cdled the R'-
zone, consisting o all stones (= "shadow stones") played to prove that a lower-order
A-seach (an ordinary ladder) cannot kill the white stone in figure 3. If al the moves
of these failing ladders (of which ore of them is shown in figure 2) are recorded (cir-
cles), and all points adjacent to the drcles (liberties of the shadow stones) are alded
aswell (sguares), theresult is e in figure 13:1°

% o8

2 IR D | .5. pe
R T g .9
$

Fig. 13. Relevancy-zone for bladk? Fig. 14. Iswhite a dead after black 1?

Definition 3. A shadow stone corresponding to a A"-treeis a stone that is played in
this\"-treg or in one of the lower-order A-trees cdled from the \-tree

Comparing figures 6 and 13 it is ®en that the R-zone of figure 6 is contained within
the R'-zone of figure 13. This sems smple enough, reducing the number of points
considered for finding the dtadker's A>>moves from 355to 36 Using this methodo-
logy, a paint around e in figure 3 will never be considered as a A>-move, wheress a
point such as f would. There is a problem, however, namely what to do with so-cdled
inversions?

10 Note that in this and the following examples, there is no limit on the maximal seach depth.
With limited seach depth, the relevancy zones would be smaller. Also, note in figure 13 that
the liberties of the white ladder-bresker are alded (more onthisin sedion 4.2 on inversions).
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4.2 Inversions

In Go hlock tadics, the dtadker tries to confine the defender, whereas the defender
tries to break loose or make two eyes. The defender can break loose by either mov-
ing/extending ou, or trying to capture some of the atadker's surrounding stones. We
dencte the defender's trying to catch some atadker's gones an inversion, since the
roles are switched.

To yield an example, we mnsider the defender disturbing/averting the threa of a
loase ladder (A*-tre€) by means of an (inverted) ordinary ladder (A\'-tree). An example
is down in figure 14.

Bladk has just played 1, a A*-move threaening to kill white a in a A*tree (loose
ladder). Blad 1 isastandard tesuji for cgpturing ablock like a, but before dooming a
dead, we need to consider the fad that the surrounding Hadk block b is vulnerable
due to a limited number of liberties. Hence, the question is. what are the possble
white \’-moves foll owing Hadk 1?

In order to answer this, we play out the threatened A*tree killi ng white. This is
shown in figure 15.2! These moves can aso be found as circles in figure 16.2 Since
the black block bl has three liberties only, these liberties are dso added to the R'-
zone. The general rule for doing this makes use of the concept of quasi-liberties, de-

fined below.
| | | HH]
$o % 188 iyl

9O A i

Fig. 15. KillingwhiteinaA®  Fig. 16. Relevancy-zone Fig. 17. White A>-moves
for white

Definition 4. A quasi-liberty correspondng to a A"-treeis a liberty that is not coinci-
dent with a shadow stone correspondng to the A"-tree. (The number of quasi-liberties
will aways be < the number of red li berties)

Example: In figure 16, the block bl has 3 quasi-liberties (coinciding with its red
liberties snce nore of the points aurrounding bl are drcles (shadow stones)). The
blocks b2 and b3 have 3 and 2quasi-liberties, respedively.

11 The sequencein figure 15 contains both A%, A= and A°-moves (blac 1 is a A’>>move, blad 3
isaA-move, and black 5 is a A>-move), since dl moves in any lower-order A-tree ae "re-
corded" to yield the shadow stones.

12 The reason why there ae 8 circled moves in figure 16 compared to the 5 shown moves in
figure 15 is that the shadow stones in figure 16 (circled moves) aso contain white moves
played at the three etra points. These moves are (hon-working) white escgpe-attempts.
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Using the concept of quasi-liberties, the inversion rule can be stated:

Inversion rule: Consider a A,-treewith value 1 or 0. Call the defender's block a O-
surrounding Hock. Now, repea the following for m=1, 2, 3, ... , c: Find al blocks
of opposite wlour touching the arealy found (m-1)-surrounding block(s). Of these
new potential m-surrounding docks, only keep those that have not been found already
for smaller m, and for which the following is observed: q < n—m + 3, where q is the
number of quasi-li berties of the block.

Given this, the R -zone corresponding to the A "-tree ca naw be defined. First, take
the shadow stones and points adjacant to the shadow stones. Next, if A" =1, all quasi-
liberties of al surrounding blocks from the @ove list of the same colour as the
attacker are alded to the R'-zone. Conversely, if A" = 0, all quasi-liberties of all sur-
rounding Hocks of the oppasite colour of the atadker are alded to the R'-zone.

Example: All attadker's blocks touching the defender's block and oleying the
equality g<n—m+ 3 are cdled 1-surrourding. In the example, we ae analyzing the
relevancy zone of a A *treewith value 1 (in order to find A>moves), and hencen = 2.
Thus, in order for bladk blocks to be 1-surrounding, they must have fewer than n —m
+3=2-1+3=4quas-liberties. In figure 16, it is e that bl has 3 quasi-liberties,
whereas b2 and b3 have 3 and 2 quasi-liberties, respedively. Hence both b1, b2 and
b3 are 1-surroudng blocks.

The blocks b1, b2 and b3 touch threewhite blocks, a already being in the list, and
¢l and c2 being new. In order for awhite block to be 2-surrounding, it must have less
thann—m+ 3 =2 -2 + 3 = 3 quasi-liberties. Since c1 and c2 have 3 and 4 quasi-li-
berties, respedively, these blocks are nat 2-surrounding. As there are no 2-surround
ing Hocks, the search for m-surrounding Hocks is terminated, not worrying about the
potential 3-surrounding docks d1 and d2 (even if they had had lessthan 2 quasi-lib-
erties).

The true R-zone correspondng to the A > -treeis sown in figure 17, where it is e
that only two white moves adually disturb/avert the threaened A tree of figure 15
(@l other white moves fail to disturb figure 15). The two triangled white moves dis-
turb the A *tree because they render possble the inverted ladder shown in figure 19 —
an inverted ladder bladk has noway of esceping.

2

Fig. 18. Does white 2 save white a?
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Fig. 19. The threaening inverted ladder Fig. 20. Zone made by the inversionrule

Now consider figure 18, where white has just played the A>-move white 2, disturbing
the threatened A *-treeof figure 15. To find candidates for the next black A*-move, the
now failing A *tree is played ou, and al those A*-moves (and the A™- and A°-moves
generating those A>moves) are recorded. The shadow of these stones is sown as
circlesin figure 20.

Using the inversion rule, the relevancy zone would look like figure 20. This sams
to be asafe bet for a R'-zone mntaining the true R-zone of bladk disturbance-moves
(black A*-moves following white 2 in figure 18). However, the inversion rule is not
100% safe, which is sen by the fad that a blad stone at g is adtually a disturbance
threatening A* = 1. Thisis o, because dter blac g, the inverted ladder shown in fig-
ure 19 nolonger works —and the example is constructed in such away that after bladk
g there is no aher ladder that works for white. Thus, bladk g shoud in principle be
courted among the possble black A°-moves in this position, and thus be part of the
R -zone.

Obviously, g is not the best move for blad to play in order to fend off the threa-
ened ladder of figure 19, but we are interested in ensuring that all possble bladk A*-
moves are generated, leaving it up to some successve forward-pruning heuristic to
cut some of them off afterwards, if they can safely be judged inferior to ather bladk
moves. But at least we shoud know that moves like bladk g exist.

A much better black A*>-move would e.g. be amove & 1 in figure 19. After such a
move, white is close to being dead, since white will soonrun out of (inverted) ladder-
threas on the black block bl. But the interesting thing about a black move & g is that
it encloses the territory below g at the same time & threaening to kill a. Hence, bladk
g could be used as aforcing territory-enclosing move or as a ko threg.*?

The question is how the R'-zone catches a move like bladk g? The answer is that
the white block e is actually surrounding the black block bl in much the same way as

13 | nterestingly, awhite A>-answer to a possble bladk A*-move & g in figure 20 could be amove
diredly to the l€eft of or below g (giving an atari on the black stone & g). This would be yet
another inversion.
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cl, c2 and c3, even thoughiit is, of course, much more indiredly. It is possble to for-
mali ze this with help of additional concepts of so-cdled quasi-surroundedness (white
e quasi-surroundng bl) and so-cdled shadow blocks, but spacedoes not permit going
further into this here.'4

Apart from the remaining problems of the inversion rule, however, thisrule & least
seams to contain some of the right abstrad concepts for the construction o reliable
relevancy-zones, even thoughit may still overlook a few exotic moves. Such exotic
moves are typicdly easy for the opponent to fend df and wsually na relevant to the
solution o the problem.®

More work needs to be done in this field, and unil some dgorithm for the con-
struction d R'-zones can be proved to contain the true R-zones in all cases of Go
block tadics, an algorithm like the proposed inversion rule would just have to be seen
as providing some useful foundations for the implementation o abstrad topdogica
knowledge regarding open-space Go bock tadics. Perhaps sme kind of automated
theorem-proving could be of use here; cf. the interesting approach in [4]. And for
another example ill ustrating the inversionrule, the reader is referred to [11].

5 Conclusions and Scopefor Further Work

To conclude briefly, the A-seach method seems to be very well suited for obtaining
well-defined goals in two-player board games like thessor Go, provided that passng
is allowed or zugzwang is not a motive. As siown in sedion 2 A-search dfers the
theorems of confidence and convergence, and the dgorithm is smple and requires
negligible working memory in itself. As sdion 3indicdes, in many cases A-seach is
cgpable of offering arelative seach spacereduction over standard alpha-beta compa-
rable to the relative reduction of standard apha-beta over minimax. In addition, the A-
seach method dten eases the implementation of abstrad game-spedfic knowledge,
and A-seach can be combined with any seach method for seaching the A-trees, in-
cluding proof-number search (thus rendering possble an easy combination of null-
moves and proof-numbers).

In Go, the A-seach agorithm is capable of solving open-space tadicd problems
(tesuji) from e.g. volume 4 of Graded Go Problems [6] with relative e@e.'s Regard-
ing the scope for further work, the following pants could be @mnsidered:

14 With these alditional conceptsit isaso possble to justify theinclusion o the liberties of the
white ladder-bre&ker in figure 13 in the R -zone.

15 As noted before, such moves could till be relevant as forcing moves or ko threas. Also, in
the mntext of finding double threds, such moves can be highly interesting.

16 As an example, the following numbers have been tried ou successully: 2, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 41, 103, 104, 105, 107, 108, 110, 113. The program uses iterative
deepening apha-beta with transposition tables for seaching the A-trees, together with the
inversion rule described in sedion 4. In addition, movesin al A-trees are ordered by counting
the number of liberties and meta-liberties (points adjacent to liberties) of the atadked block
after ead pasgble move (minimizing these if the dtadker moves, and maximizing these if the
defender moves, and also prioritizing moves with low Manhattan dstance to the dtadked
block).
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Generally:

Can the dgorithm be taught to find at least one of two (or more) goals by means of
identifying dauble-threa-moves?

Which kinds of search techniques are well-suited for A-trees? How to manage the
use of transposition tables in the diff erent orders of A-trees? Which kinds of move-
ordering techniques could be useful (iterative degpening with transposition tables,
history heuristic ec.)? Use of proof-number seach to solve the A-trees?
Investigate alarge number of redistic game-problems with A-search and aher
seach methods, in order to provide some red-world statistics on the efficiency of
the diff erent approacdhes.

Can zugzwang-motives smehow be incorporated into A-search?

How to implement parallelism (multiple processors) most conveniently into A-
seach?

Go-spedfic

Go hlock tadics: Solving inversions (cf. sedion 4.2) as independent sub-problems
(locd games) if possble. Perhaps sme of the todls described in [8] could be of
use. Try to reducethe size of the R -zone @& much as passhble by means of solving
all A"-trees two times — the second time using the best moves (stored in a transpo-
sition table) from the first search. Try to classfy certain kinds of A’-moves, see
eg. [7].

Implementing abstrad knowledge regarding tsume-go, semeai and connedion
problems in the context of the A-search methodology.

Using A-seach to search for eyes or Benson-immortality, see[3] and [9].

How to handle seki or ko?
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Appendix: A-search illustrated on Chess

Consider the mating problem in figure A1. In chessmating problems, a A-move is a
chedk, but it is easily seen that the blac king cannot be mated with a sequence of

white dhedk-moves. Hence, in this problem, A" = 0. However, the blad king can be
mated in aA’treg as srown below.
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Fig. Al How to matebladk? ~ Fig. A2. Bladk A>move Fig. A3. White A*>moves
White A*-moves following Re2-el following Kg6-h5

In figure A1, all the white A>-moves (moves threaening a forced mating check-se-
guence) are shown. Of these 7 white moves, three of them are dired chedks, in con
trast to the four other more "quiet" moves (Re2-€3, Re2-el, Rf2-f3 and Rf2-f1). For
instance, after white Re2-el, if bladk passes, a mate results from Rel-gl+, Kg6-
h7/h&/h5, Rf2-h2++. Now, consider Re2-el. As shown in figure A2, thereis only one
bladk A*-move averting the threatened mating chedk-sequence: Kg6-h5. After Kg6-h5,
white has no mating ched-sequence His best try would be Rel-h1+, Kh5-g4, Rhl-
g1+, but it peters out after Kg4-h3. In figure A3, the 6 white A*moves foll owing Kg6-
h5 are shown. Of these, four are dired chedks, while the more quiet Rel-gl and Rf2-
g2 threaen mating ched-sequences. After either Rel-gl (or Rf2-g2), bladk cannot
avoid a mating ched-sequence no matter where he moves, implying that there ae no
A’-moves foll owing Rel-g1 (or Rf2-g2). Hencebladk can be dedared dead.



