
Preprint, ICGA Journal, December 2000 1

LAMBDA-SEARCH IN GAME TREES
–  WITH APPLICATION TO GO

Thomas Thomsen1

Copenhagen, Denmark

ABSTRACT2

This paper proposes a new method for searching two-valued (binary) game trees in games
like chess and Go. Lambda-search uses null moves together with different orders of threat
sequences (so-called lambda-trees). Lambda-search focuses on threats and threat aversions,
but still guarantees to find the minimax value. The guarantee presupposes that the game
rules allow passing or that zugzwang is not a motive. Using negligible working memory in
itself, the method seems able to offer a large relative reduction in search space over the
standard alpha-beta method (comparable to the relative reduction in search space of alpha-
beta over minimax). Among other things, the reduction depends upon how non-uniform the
search tree is. Lambda-search is compared to other analogous approaches, such as null-
move pruning and proof-number search. Moreover, it is explained how the concept and
context of different orders of lambda-trees may ease and encourage the implementation of
abstract game-specific knowledge. This is il lustrated on open-space Go block tactics, by
distinguishing between different orders of ladders. In close relation, some possibly
fundamental work regarding an abstract formalization of the concept of relevancy zones
(zones outside of which added stones of any colour cannot change the status of the given
problem) is offered.

1. INTRODUCTION

Lambda-search (λ-search) is a general method for searching a two-valued (binary) game tree. It is inspired by
the so-called null-move pruning heuristic known from computer chess. However, λ-search works in a different
and much more well -defined way, since it operates with direct threats, threats of forced threat sequences, and
so on.

Let us start with a preliminary idea of what λ-search is. In chess the goal of the game is mating the opposing
King. A direct threat on the King is called a check; we call a sequence of checks that ends up in mating the
King a forced mating check sequence. However, a threat of such a forced mating check sequence is not
necessarily a check move itself. We call such a threat a meta-threat – being of a second order compared to the
first-order check moves in the check sequence. It can be a quiet move (in other games called an enclosing
move3).

Similarly, in Go, a direct threat on a block of connected stones is called an atari. A forced atari sequence
resulting in the capture of the block is called a working ladder (Japanese: shicho). Hence, in this context, a
(meta-)threat of a forced threat sequence would be a ladder threat, which does not have to be an atari itself.
Consider Figure 1: Black cannot capture the white stone a in a ladder, because of the ladder block (i.e., the
other white stone). An example of such a failed attempt is shown in Figure 2. Now, providing that Black gets a
free move (a move that is answered with a pass by White), there are a number of ways in which Black can
make the ladder work. One of the possibiliti es could be playing a free move at c in Figure 3. This threatens the
ladder shown in Figure 4. Another possibil ity could be playing at d in Figure 3, threatening the ladder shown in
Figure 5.

                                                          
1 Stockholmsgade 11, 4. th., DK-2100, Copenhagen, Denmark. Email: thomas@t-t.dk, http://www.t-t.dk.
2 This article is a slightly adapted and improved version of a paper delivered under the same title on October 27, 2000 on
the Second Computer and Games Conference (CG’2000) in Hamamatsu, Japan. The paper is published as Thomsen (2001).
We kindly thank the Editors T.A. Marsland and I. Frank as well as Springer-Verlag for the preparedness to allow an
(enriched) reproduction.
3 Note: for readers not famili ar with Go, the appendix contains a chess example similar to the Go example given below. In
chess, goals other than mating are, for instance, trapping the opponent’s Queen, creating a passed Pawn, or promoting a
Pawn.
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Figure 1: How to capture a? Figure 2: A fail ing ladder (λ1=0). Figure 3: Black λ2-moves?

Figure 4: Working ladder (λ1=1) after black c. Figure 5: Working ladder (λ1=1) after black d.

The moves c and d in Figure 3 are thus two indirect threats on the white stone a, compared to a direct (first-
order) atari. A possible generalization of the concept of threats is the main theme of this article.

We start introducing the terminology used. A direct threat sequence is called a λ1-tree, consisting solely of λ1-
moves (checks/ataris for the attacker and moves relieving these for the defender). The λ1-tree is a standard
search tree solvable by means of any minimax search technique, with value 1 (success for the attacker) or 0
(success for the defender).

At the next level of abstraction, a λ2-move for the attacker is a move that threatens a λ1-tree with value 1, if the
attacker is allowed to move again. Figure 6 depicts all possible black λ2-moves given unlimited search depth;
i.e., all black moves threatening a working ladder (or a direct capture; hence the two atari moves on white a are
also λ2-moves) if left unanswered. If for instance, 1 in Figure 7 (= c in Figure 3) is chosen, Black threatens the
ladder depicted in Figure 4. Figure 7 then shows all possible white moves averting that threat. Hence, in the
general λ2-tree, the two white moves in Figure 7 are λ2-children of black 1, and in Figure 8, the two black
moves are λ2-children of white 2 (again reviving the ladder-threat).

Figure 6: Black λ2-moves to kill a. Figure 7: White λ2-moves Figure 8: Black λ2-moves
after black 1. after white 2.
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In this way, a λ2-tree can be built out of λ2-moves; the λ2-moves are threats of threat sequences (ladder threats)
for the attacker, and aversions of threat sequences (ladder breakers) for the defender.4 In the appendix, we
provide a similar chess example (see Figures 21 to 23).

In the context of Go block tactics, a λ2-tree can be interpreted as a net or loose ladder (Japanese: geta or yurumi
shicho), but the order of λ can easily be > 2. For instance, loose loose ladders (λ3-trees) are quite common in
open-space Go block tactics, the λ3-trees being built up of λ3-moves, originating from λ2-trees. Tsume-go
problems (enclosed li fe/death problems) or semeai (race-to-capture) usuall y involves high-order λn-trees
(mostly n ≥ 5), and connection problems (trying to connect two blocks of stones) often feature high λ-orders,
too. For example, in Figure 9, white a can be killed in a λ7-tree (the solution is black b, 21 plies/half-moves),
whereas in Figure 10, black a and b can be connected into one block in a λ3-tree (the solution is black c or d, 15
plies).5

Figure 9: Black to kill white a (λ7). Figure 10: Black to connect a and b (λ3).

In Section 3, we show that λ-search, compared to standard alpha-beta, can often yield large reductions in the
number of positions generated in order to solve a given problem, especially if the search tree is highly non-
uniform and as such exploitable by λ-search. Hence, the λ-search methodology might be useful for goal-
directed search in almost any two-player, full-information, deterministic zero-sum game.6

The point about λ-search is that in each λ-tree, all l egal moves are not just being blindly generated and
ploughed through, but instead the search focuses on those making and averting (more or less direct) threats.
This implicit move ordering directs the search towards its goal, and even though the λ-search methodology
does not in itself contain any knowledge of the concrete game problem analyzed, λ-moves often seem to have
at least some minimum of meaning or purpose (cf. Figures 6 to 8, or Figures 21 to 23), in contrast to the often
random-looking move sequences generated by alpha-beta search.

In addition to this implicit threat-based move ordering, the λ-search approach can often ease and encourage the
implementation of abstract game-specific knowledge. For instance, regarding λ1-moves in chess mating
problems, there are up to three possible ways of relieving a check (capturing the checking piece, interposing a
piece, or moving the King). Similarly, regarding λ1-moves in Go block tactics (ladders), the attacker must
always play on one of the defender’s liberties, whereas the defender must always play on his remaining liberty,
or capture a surrounding block. Section 4 describes an attempt of formulating some abstract/topological Go-
tactical knowledge regarding general λn-trees. The abstract rules rely both upon the value of the λ-order n, and
on information generated during search of lower-order λ-trees.

                                                          
4 As most readers with a basic knowledge of Go would know, the best black λ2-move is b in Figure 3, after which there are
no white λ2-moves. Another way of stating this is that after black b, there is no way for White to avoid being kill ed in a
subsequent ladder (λ1-tree), and so White can be declared unconditionally dead.
5 Note generally that if λn = 1, the attacker has to spend n + 1 extra moves (moves that can be answered by a pass/tenuki by
the defender) in order to “execute” the goal. Hence, in Figure 9, white a can be conceived of as having n + 1 = 8 effective
liberties, instead of only the 5 real/visible ones. If the black block surrounding White was vulnerable, such knowledge
would be crucial in, for instance, semeai problems (cf. Müller, 1999), or regarding the diff icult problem of “opening up”
tsume-go problems (cf. Wolf, 1996).
6 Provided that the game rules allow passing, or zugzwang (move compulsion) is not a motive for obtaining goals.
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2. FORMALIZING THE λλ-SEARCH METHOD

In this section, the λ-search method is formalized in its most general form, not tied to the context of any
specific game. We start by defining the λn-tree.

Definition 1. A λn-tree is a search tree (with the aim to achieve a single well-defined goal) which consists
solely of λn-moves (defined in definition 2); a λa

n-tree is a λn-tree where the attacker moves first.

The minimax value of a λn-tree is either 1 (success for the attacker) or 0 (success for the defender).7 A node is a
leaf (terminal node) if the node has no children because there are no legal λn-moves following it. If this is so,
the value of the leaf is 1 if the defender is to move, and 0 if the attacker is to move. The λ0-tree is particularly
simple: λa

0 = 1 if the attacker’s goal can be obtained directly by at least one of the attacker’s legal moves, and
λa

0 = 0 otherwise.

Definition 2. A λn-move is a move with the following characteristics. If the attacker is to move, it is a move
that implies – if the defender passes – that there exists at least one subsequent λa

i-tree with value 1, 0 ≤ i ≤ n–1.
If the defender is to move, it is a move that implies that there does not exist any subsequent λa

i-tree with value
1, 0 ≤ i ≤ n–1.

Example. (Go block tactics) For the construction of a λ2-tree, see Figure 3. Here, a black play at c is a λ2-
move. After c, provided that White passes, λa

0 = 0 (the block cannot be captured directly), but λa
1 = 1 (the

block can be captured in a ladder, cf. Figure 4).

After Black has played the λ2-move at c, we have the position of Figure 7. Here, a white move at any of the two
marked points is a λ2-child of the black λ2-move, since after any of these two white moves, λa

0 = λa
1 = 0 (Black

cannot follow up with either a direct capture or a working ladder). The λ-method is il lustrated in Figure 11.

λa
n-tree

λa
n–1= 1 λa

n–1= 0

aa

bwhite pass

Figure 11: The λn-tree.

In Figure 11, black a is a λn-move, because – if White passes – it can be followed up with a λa
n–1-tree with value

1 (cf. the small tree to the left). Considering the white move b, this is likewise a λn-move, since it is not followed
by a λa

n–1-tree with value 1 (cf. the small tree to the right8). Other legal black and white moves are pruned off,
and hence the λn-tree generally has a much smaller average branching factor than the full search tree. Note that
in all the three depicted λ-trees the attacker moves first, and note also that the algorithm works recursively in the
“horizontal” direction, so that the moves in the small λn–1-trees to the left and right are in turn generated by λn–2-
trees, and so on downwards, ultimatively ending up with λ0-trees. Note finally that a λn–1-tree generally contains
much fewer nodes than a λn-tree. After the two definitions above, it is time to introduce an important theorem.

                                                          
7 The terms “attacker” and “defender” are arbitrary and could just as well be “left” and “ right” . For instance, in Go,
“attacking” could just as well be trying to connect two blocks of stones, and “defending” trying to keep them disconnected.
8 In fact, small λa

n–2-trees, λa
n–3-trees, and so on, should also be included at the left and right (cf. definition 2), but these are

omitted here for the sake of clarity.
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Theorem 1 (confidence). If a λa
n-tree search returns the value 1 (success for the attacker), this is the minimax

value of the position – the attacker’s goal can be achieved with absolute confidence.

Proof: For a λa
n-tree to return the value 1, the attacker must in each variation be able to force the defender into

positions where he has no λn-moves (cf. definition 1). The defender not having any λn-move means that no
matter how the defender plays, the attacker can follow up with a lower-order λ-tree with value 1: λa

i = 1, 0 ≤  i
≤  n – 1. By the same reasoning as before, this in turn means that the attacker can force the defender into
positions where he has no λi-moves. By recursion, this argument can be repeated for lower and lower orders of
λ-trees, until we (in at most n steps) end up with a λ0-tree. And if a λa

0-tree has value 1, the goal is obtained
directly (cf. definition 1). 

�

This theorem is crucial for establishing the reliabilit y of λ-search. As theorem 1 shows, if a λa
n-tree returns the

value 1, the attacker’s success is a proven success no matter how the defender attempts to refute it, so if a λ-
search finds a win for the attacker, one can have absolute confidence in it.

Theorem 1 is obviously not symmetric. If a λa
n-tree search returns the value 0, this does not entail that there

could not be a forced attacker’s win in the full game tree. It only means that the defender cannot lose by means
of attacker’s λn-moves, but there might very well be a forced win for the attacker lying in wait in trees of order
n+1 or higher.

Example. (Go block tactics) If Black plays a working ladder (λ1=1), he is certain to kill the white block: the
defender cannot avoid being kill ed. But the other way round, if a white block cannot be killed in a ladder, this
does not, of course, imply that it could not, for instance, be kill ed in a loose ladder.

Seen in the light of the above, given some specific goal for the attacker to achieve, and provided that the
attacker cannot achieve the goal directly within the first move (λa

0 = 0), the strategy will be to try out first a λa
1-

tree. If λa
1 = 1, we are finished (cf. theorem 1). If λa

1 = 0, we continue with a λa
2-search, and so on, until t ime

runs out. If we end up with λa
n = 0 for some value of n, we cannot say anything authoritatively on the status of

the problem, other than that the defender survives a λa
n-attack.

The next question is what happens asymptotically as λn-trees of higher and higher order get searched? Provided
that we know a priori that the attacker’s goal can be reached within at most d plies by optimal play (d being an
odd number), can we be sure that the value of λa

n will converge to 1 for some n, as n tends towards infinity?

If the game-rules allow passing, the answer is yes, and in that case it is possible to prove that n ≤ (d–1)/2, as
shown in theorem 2, for which we need lemma 1.

Lemma 1. Consider a full search tree consisting of all l egal moves for both players. In this search tree, consider
a node x where the attacker is to move. Assume that we are not considering the root node (move #1), but some
attacker’s move deeper down the tree (i.e., some odd move number ≥ 3). Consider the subtree unfolding from
node x. For the attacker to be able to force the defender into a λa

n-tree with value 1 expanding from node x, the
attacker must have been threatening λa

n = 1 when he was to move last time. Had he not been threatening λa
n =

1, the defender could have passed, after which (cf. definition 2) the value of a subsequent λa
n-tree would have

been  0.

Example. (Go block tactics) In order to be able to force the defender into a working ladder (λa
1 = 1), the

preceding attacker’s move must have been a ladder-threat. If this had not been so, the defender could have
passed, and the ladder would still not work.

Theorem 2 (convergence). Given that the attacker’s goal can be reached within at most d plies by optimal play
(d being odd), then (1) the value of  λa

n will converge to 1, and (2) for n holds: n ≤ (d–1)/2.

Proof: Consider again the full search tree consisting of all l egal moves for both players. Assume that we know
a priori that there exists a forced win for the attacker in at most d plies, d being some odd number ≥ 1. Consider
a node y at depth d – 1 (with the attacker to move) after which the forced win is executed at depth d. This
means that the tree expanding from y is a λa

0-tree with value 1. Using lemma 1, this again means that the
attacker must have been threatening λa

0 = 1 when he played last time (i.e., played a move at depth d – 2).
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Threatening λa
0 = 1 is the same as playing a λ1-move; hence the attacker must have played a λ1-move at depth d

– 2.

In order for the attacker to be able to force the defender into this λ1-move at depth d – 2, it must have been part
of a λa

1-tree with value 1. The first attacker’s move in this tree can be at any depth d1, where 1 ≤ d1 ≤ d – 2. If
d1 = 1, we are finished (hence establishing n = 1). Else, if 3 ≤ d1 ≤ d – 2, in order to force the defender into this
λa

1-tree with value 1, the attacker must have been threatening λa
1 = 1 (= playing a λ2-move) at some depth d2,

where 1 ≤ d2 ≤ d1 – 2.

This goes on recursively for λ-trees of higher and higher order (each time moving at least two plies upwards in
the full search tree), so in the worst case we end up with a tree of order n = (d–1)/2. This reasoning can be
repeated for all nodes y at depth d – 1 after which the forced win is executed at depth d, and hence it is proved
that n ≤ (d–1)/2. �

Example. (Go block tactics) Assume that we know a priori that the attacker can kill the defender in at most 5
plies. The attacker’s move #5 must have been the capture (taking the stones off the board), so the attacker’s
move #3 must have been an atari (λ1-move) – otherwise the defender could have passed, and the stones could
not have been taken off the board at move #5. Regarding the attacker’s move #1, it can have been a(nother) λ1-
move if the whole kill ing sequence is a working ladder (λ1-tree with value 1). Otherwise, the first attacker’s
move could have been a λ2-move (loose ladder move), threatening λa

1 = 1 (an ordinary ladder). But if the
attacker’s move #1 had not been either a λ1-move or a λ2-move, the defender could have passed at move #2,
and there would have been no way for the attacker to establish a working ladder (λ1-tree) at move #3, and
hence no way to kill the defender at move #5. Thus, if d = 5, the λ-search can only be of order 1 or 2, meaning
that if d = 5 and a λ2-search returns value 0, the problem cannot be solved in 5 plies. This corresponds to the
inequality, since the formula states that n ≤ (d–1)/2 = 2.

Considering games like chess where passing is not allowed, theorem 2 does not hold, since the abili ty to pass is
a prerequisite for lemma 1. However, apart from zugzwang motives (e.g., in late chess endgames), this is not a
problem if the defender has always at least some harmless/non-suicidal move to play instead of a pass move.
Hence, for practical purposes, theorem 2 also applies to goals such as mating in middle-game chess positions.
In addition, it should be noted that theorem 1 applies whether passing is allowed or not.

Thus, theorems 1 and 2 show that λ-search is not to be interpreted as some heuristic forward-pruning technique,
since a λ-search – in the worst case searched to λ-order n = (d–1)/2 – returns the minimax value, provided that
passing is allowed or zugzwang is not a motive. Some pseudo-code containing the λ-search methodology can
be found in Thomsen (2000).

3. COMPARING λλ-SEARCH WITH OTHER SEARCH METHODS

After the formal proofs of confidence and convergence, the question is how effective the λ-search method
really is. In this section we compare the λ-search method to three other techniques, viz. standard alpha-beta,
alpha-beta with null-move pruning, and proof-number search.

3.1 Standard alpha-beta

With the help of some simplifying assumptions it is possible to indicate the effectiveness of λ-search compared
to standard alpha-beta. Below, it is shown that the effectiveness generally depends on the ratio of the branching
factor of the λ-search trees and the branching factor of the full search tree, in combination with the λ-order n.

Consider a general λ-search tree of some order n, with the attacker moving first, and assume that an attacker’s
win exists in at most d plies (d being odd). Moreover, assume that passing is allowed or zugzwang is not a
motive. We will now try to count the total number of positions generated in order to search such a λn-tree,
including the positions generated in the lower-order λ-trees. It is assumed that minimax is used in the λn-tree
and as reference algorithm for the full search tree. The reasons for using minimax are explained below.
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Let is further assume that B is the average branching factor of the full search tree (i.e., the number of legal
moves in each position: in chess, around 30 to 40, and in Go around 200 to 250). Assume furthermore that all
λ-trees have the same average branching factor, b (b being ≤ B). In order to generate the attacker’s moves at
depth 1 in the λn-tree, all l egal attacker’s moves must be examined, to see whether they are followed by some
λi-tree (i ≤ n–1) with value 1 (cf. a in Figure 11). This amounts to Bn λi-tree searches (the λi-trees being of
order i = 0, 1, ... , n–1). Subsequently, at depth 2 in the λn-tree, for each of the defender’s λn-nodes, all l egal
defender’s moves must be examined, to see whether they are followed by λi-trees (i ≤ n–1) with value 0 (cf. b
in Figure 11). This amounts to a total of bBn λi-tree searches (the λi-trees being of order i = 0, 1, ... , n–1).

Hence, in order to generate all λn-moves at depths 1 and 2, corresponding to the three black moves and the nine
white answers in the λn-tree in Figure 11, (1+b)Bn number of λi-trees must be analyzed (the λi-trees being of
order i = 0, 1, ... , n–1), all of them to depth d–2. By a similar argument, the λn-moves at depths 3 and 4 in the
λn-tree require that (b2+b3)Bn number of λi-trees (the λi-trees being of order i = 0, 1, ... , n–1) are searched to
depth d–4, and so on.

Now the question is how deeply the λn-tree needs to be searched? This depends on circumstances, and the
depth will generally be between 2 and (d–1) – 2(n–1) plies. To simplify, we assume the worst case, namely that
the λn-tree needs to be searched to its maximum depth, i.e., (d–1) – 2(n–1) plies.

The above reasoning leads to the recursive algorithm of Figure 12 – given in pseudo-code – for the total
number of positions generated in order to search a λn-tree with search depth d.

Figure 12: Pseudo-code for counting the total number of positions generated by a λn-search to depth d.

The recursion ends with the number of generated moves in the λ0-tree, since the algorithm knows that a λ0-tree
demands B positions to be evaluated. For given values of B and b, the above-mentioned recursive formula is
thus capable of estimating the total number of positions generated in a λn-search to depth d, where all the λn-
trees are searched by means of minimax. This estimate can be compared to (Bd+1–1) / (B–1), being the
estimated total number of positions generated in a minimax-search. Thus, for given B, b, n and d, we define the
reduction factor as follows: r = [(Bd+1–1) / (B–1)] / lambdaMovesGenerated(n, d).

The reader might wonder why minimax is used instead of alpha-beta? This is only because assuming minimax
makes the reduction factor easier to compute – the point is that using alpha-beta (or any other search technique)
instead of minimax would not alter the reduction factor, assuming that alpha-beta (or any other search
technique) works equally efficiently in the λ-trees and in the standard (full) search tree. The eff iciency of
alpha-beta pruning thus cancels out in the numerator and denominator of the reduction factor, so that the
reduction factor can also be interpreted as the efficiency of the λ-search technique (using standard alpha-beta in
the λ-trees) over standard alpha-beta.

To provide an idea of the magnitude of the reduction factor, we show in Tables 1 and 2 the results of (b, B) =
(4, 40) and (b, B) = (8, 40), as calculated by the algorithm of Figure 12.

lambdaMovesGenerated(n,d) {
  if(n==0)return B;
  sum=0;
  for(i=2;i<=(d-1)-2*(n-1);i=i+2) {
    for(j=0;j<=n-1;j=j+1) {
      sum=sum+(b**(i-2)+b**(i-1))*B*lambdaMovesGenerated(j,d-i);
    }
  }
  return sum;
}
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n=1 n=2 n=3 n=4 n=5
d=3 8
d=5 772 65
d=7 76,942 3,174 482
d=9 7,692,425 209,432 16,192 3,328
d=11 769,231,503 15,625,505 812,550 88,201 21,791

Table 1: Reduction factor, λ-search relative to standard alpha-beta, (b, B) = (4, 40).

n=1 n=2 n=3 n=4 n=5
d=3 4.6
d=5 112 20
d=7 2,804 251 76
d=9 70,112 4,173 666 254
d=11 1,752,804 78,158 8,530 1,810 781

Table 2: Reduction factor, λ-search relative to standard alpha-beta, (b, B) = (8, 40).

For comparison we provide some additional results, viz. the reduction factor of standard alpha-beta relative to
minimax. It is shown in Table 3.9

good
move order

average
move order

bad
 move order

d=3 15 3.9 1.8
d=5 60 7.8 2.4
d=7 238 15.6 3.1
d=9 952 31.2 4.2
d=11 3,810 62.4 5.6

Table 3: Reduction factor, standard alpha-beta relative to minimax, B = 40.

Tables 1 and 2 show that the largest reductions are found for n = 1, i.e., if the problem can be solved by means
of a number of direct attacker’s threats (for chess mating: checks; for Go block tactics: ataris). For growing
depth, this renders a huge reduction factor relative to standard alpha-beta, both if the threats and threat
refutations on average make up 10 percent of the legal moves (Table 1), or 20 percent (Table 2). This
corresponds to the full search tree being highly non-uniform in a way exploitable by λ-search. But even for
more saturated problems, i.e., problems needing a larger value of n, the reduction factor is still impressive. For
instance, with b/B being 20 percent as in Table 2, a λ2-search to a depth of 5 plies would still – on average –
require only about 1/20 of the positions generated with standard alpha-beta to depth 5. This reduction factor is
comparable to the reduction factor of good or average move-ordering alpha-beta over minimax at depth 5 (cf.
Table 3).10

From the tables we observe that by using λ-search instead of standard alpha-beta the relative reduction in
search space is comparable to the relative reduction in search space by using alpha-beta instead of minimax,
especially for low saturation problems with n < (d–1)/2. It is possible to prove that – for large B and b, and for
n relatively small compared to (d–1)/2 – the reduction factor, r, can be approximated by:
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9 Note: In the calculation of these reduction factors it is assumed that the best attacker’s move is found after 10 tries (good),

20 tries (average), or 30 tries (bad). So for instance, for t = 3, the reduction for good move ordering is calculated as
follows: (1+40+402+403)/(1+10+10·40+10·40·10). It should also be noted that the move ordering can often be improved
upon in a number of ways, but here we focus on standard alpha-beta only.

10 This could, for instance, be a model of those mate-in-two problems in chess where the first attacker’ s move is not a check
(whereas the next is the checkmate). In that case – a λ2-tree searched to depth 5 – a reduction factor of about 20 would be
expected. Alternatively, if the first attacker’s move is a check (and the next the checkmate) – a λ1-tree – the reduction
factor would be expected to be about 112.
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In that case, the reduction factor depends on the size of B compared to b in the (d–n–1)th power, divided by a
binomial coeff icient. A possible interpretation is: assume that we had some divine knowledge, knowing in each
position of the full search tree which b out of the total of B legal moves contain the best move (thus in each
position having only to consider b instead of B moves). In that case, the reduction factor would be r = [(Bd+1–
1)/(B–1)] / [(bd+1–1)/(b–1)] ≈ (B/b)d. However, since we do not have access to such divine knowledge, lower-
order λ-trees have to be searched in order to find the b interesting moves (this being more costly for higher n),
explaining the binomial coefficient and the fact that the exponent is (d–n–1) rather than just d.

From the formula it is seen that the crucial factor for the reduction factor is the relative size of b in relation to
B. Thus, we would expect similar reduction factors (tables like Table 1 and 2) for (b, B) = (8, 40) and, e.g., (b,
B) = (50, 250), whereas the reduction factors for, e.g., (b, B) = (8, 250) would be much larger than for (b, B) =
(8, 40). It should, however, be emphasized that all the above calculations must be taken with a large pinch of
salt, since the calculations just yield some theoretical and not empirical indications of the strength of λ-search
over standard alpha-beta. A more authoritative estimate of the efficiency of λ-search would imply analyzing a
large number of realistic game problems with different search techniques, including λ-search, thus being able to
offer some real-world statistics on the relative merits of the different approaches.

3.2 Null-move pruning

Alpha-beta augmented with null-move pruning (for an overview, see Heinz (1999)) might seem similar to λ-
search, but even though the underlying idea is quite similar, there are at least four important differences – apart
from the fact that alpha-beta augmented with null-move pruning can be directly applied to non-binary search
trees (in contrast to λ-search).11

First, in λ-search, only the defender makes null moves, and λ-search does not use depth reduction when
searching the lower-order λ-trees.

Second, a λn-search controls the total number of admissible defender’s null moves in any branch between some
node and the root; this number is always ≤ n. Knowing the concrete λ-order of a problem (i.e, distinguishing
clearly between different orders of threats) often facilit ates the implementation of abstract game-specific
knowledge.

Third, because null-move pruning operates with a depth-reduction factor for searching the subtree following a
null move, an erroneous result might occasionally be returned. Null-move pruning with depth reduction works
extremely well in many applications (for instance, in computer chess), but it cannot offer the same absolute
reliabili ty as λ-search (cf. the theorems of confidence and convergence).

Finally, λ-search is not tied to any specific search technique for searching the λ-trees, thus opening up the
possibili ty of easily combining null moves with, for instance, proof-number search.

3.3 Proof-number search

A rather recent and popular search technique for searching two-valued search trees is called proof-number
search  (Alli s, 1994; All is, Van der Meulen and Van den Herik, 1994). Like λ-search, proof-number search
exploits non-uniformity of the search tree in an attempt to search the thinner parts of the search tree first. Still ,
the differences between the two approaches should be pointed out – apart from the fact that proof-number
search has no problems with zugzwang motives (in contrast to λ-search).

First, proof-number search uses a large working memory overhead, since the whole (or at least much of the)
search tree needs to be stored in memory. In contrast, λ-search using, for instance, standard alpha-beta (without
transposition tables etc.) as the search engine has negligible working memory requirements.

                                                          
11 The reader might wonder whether λ-search could somehow be used for non-binary search trees. A possibilit y would be to
define the goal as follows: if a leaf node has an evaluation value larger than some threshold, the value of the node is 1,
otherwise 0. So, λ-search could be used in the same way as a null -window alpha-beta search. However, a general non-
binary search tree is usually very uniform (unless, for instance in chess, a hidden mate exists), implying n = (d–1)/2. Hence,
a limited reduction factor (full saturation; cf. the diagonals of Tables 1 and 2) will appear.
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Second, it is not an easy task to incorporate transposition tables into proof-number search. In contrast, if alpha-
beta is used to search λ-trees, transposition tables can be used with as li ttle difficulty as in standard alpha-beta.

Third, λ-search depends on some technique for searching λ-trees. But the concrete search engine could be
anything as long as it works – including proof-number search. Hence, proof-number search could be combined
with λ-search with very little effort (thus combining null moves and proof numbers), and even if some new
powerful tree-searching technique will be invented, λ-search would most likely benefit from it as well .

Finally, and very importantly, as mentioned in the comparison with null-move pruning, the possibili ty of
distinguishing clearly between different orders of λn-trees – i.e., in each position knowing the context of the
value of n (and in addition: having access to information generated in lower-order λ-trees) – often makes it
easier to implement abstract game-specific knowledge. Additionally, the distinction between different orders of
λ-trees makes it possible to concentrate time- and/or memory-expensive techniques on the highest-order λ-
trees. Time-expensive techniques are, for instance, elaborate move-ordering schemes and pattern matching, and
examples of memory-expensive techniques are the use of transposition tables, and the use of proof-number
search.

4. IMPLEMENTING ABSTRACT GAME-KNOWLEDGE (GO BLOCK TACTICS)

4.1 The relevancy zone

One of the hardest problems in Go is how to limit the search in open-space Go block tactics by means of
characterizing some a priori zone of relevance; that is, some area of the board outside of which the addition of
any number of black or white stones in any configuration cannot alter the status of the problem. For instance,
white a in Figure 3 cannot be caught in a normal ladder, an example of which is shown in Figure 2. Adding a
free black stone at e in Figure 3 will not alter the status of the ladder (still not working), whereas a free black
stone at  f will make the ladder work. Actually, adding a free black stone at any of the marked points in Figure
6 makes the ladder work; hence each of these points is a possible λ2-move (loose ladder move) for the attacker.

However, looking at Figures 2 and 6 it does not take long before one realizes that the true relevancy zone seen
in Figure 6 should be somehow derivable from or dependent upon the shadow of the stones played in Figure 2.
So, the idea is that the true relevancy zone, called the R-zone, is situated inside another zone, called the R*-
zone, consisting of all stones (i.e., shadow stones) played to prove that a lower-order λ-search (an ordinary
ladder) cannot kill the white stone in Figure 3. If all the moves of these failing ladders (of which one of them is
shown in Figure 2) are recorded (circles), and all points adjacent to the circles (liberties of the shadow stones)
are added as well (squares), the result is seen in Figure 13.12

Figure 13: Relevancy zone for Black? Figure 14: Is white a dead after black 1? 
                                                          
12 Note that in this and the following examples, there is no limit on the maximal search depth. With limited search depth,
the relevancy zones would be smaller. Also, note in Figure 13 that the liberties of the white ladder breaker are added (more
on this in Subsection 4.2 on inversions).
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Definition 3. A shadow stone corresponding to a λn-tree is a stone that is played in this λn-tree, or in one of the
lower-order λ-trees called from the λn-tree.

Comparing Figures 6 and 13, it is seen that the R-zone of Figure 6 is contained within the R*-zone of Figure 13.
This method looks rather simple and reduces the number of points considered for finding the attacker’s λ2-
moves from 355 to 36. By using the method, a point around e in Figure 3 will  never be considered as a λ2-
move, whereas a point such as f would. However, there is a problem, namely what to do with so-called
inversions?

4.2 Inversions

In Go block tactics, the attacker tries to confine the defender, whereas the defender tries to break loose or make
two eyes. The defender can break loose by either moving/extending out, or trying to capture some of the
attacker’s surrounding stones. We denote the defender’s trying to catch some attacker’s stones an inversion,
since the roles are switched.

To yield an example, we consider the defender disturbing/averting the threat of a loose ladder (λ2-tree) by
means of an (inverted) ordinary ladder (λ1-tree). An example is shown in Figure 14.

Black has just played 1, a λ3-move threatening to kill white a in a λ2-tree (loose ladder). Black 1 is a standard
tesuji for capturing a block like a, but before dooming a dead, we need to consider the fact that the surrounding
black block b is vulnerable due to a limited number of liberties. Hence, the question is: what are the possible
white λ3-moves following black 1?

In order to answer this question, we play out the threatened λ2-tree, kill ing white. This is shown in Figure 15.13

The moves can also be found as circles in Figure 16.14 Since the black block b1 has three liberties only, these
liberties are also added to the R*-zone. The general rule for doing this makes use of the concept of quasi-
liberties, defined below.

Figure 15: Killi ng White in a λ2. Figure 16: Relevancy zone for White. Figure 17: White λ3-moves.

Definition 4. A quasi-liberty corresponding to a λn-tree is a liberty that is not coincident with a shadow stone
corresponding to the λn-tree. (The number of quasi-liberties will always be ≤ the number of real li berties.)

Example. In Figure 16, the block b1 has 3 quasi-liberties (coinciding with its real li berties since none of the
points surrounding b1 are circles (shadow stones)). The blocks b2 and b3 have 3 and 2 quasi-liberties,
respectively.

Using the concept of quasi-liberties, the inversion rule can be defined as follows.

                                                          
13 The sequence in Figure 15 contains both λ2-, λ1- and λ0-moves (black 1 is a λ2-move, black 3 is a λ1-move, and black 5 is
a λ0-move), since all moves in any lower-order λ-tree are “recorded” to yield the shadow stones.
14 The reason why there are 8 circled moves in Figure 16 compared to the 5 shown moves in Figure 15 is that the shadow
stones in Figure 16 (circled moves) also contain white moves played at the three extra points. These moves are (non-
working) white escape attempts.
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Definition 5. Inversion rule: Consider a λa
n-tree with value 1 or 0. Call the defender’s block a 0-surrounding

block. Now, repeat the following for m = 1, 2, 3, … , ∞: Find all blocks of opposite colour touching the already
found (m–1)-surrounding block(s). Of these new potential m-surrounding blocks, only keep those that have not
been found already for smaller m, and for which the following is observed: q < n – m + 3, where q is the
number of quasi-liberties of the block.

Given this definition, the R*-zone corresponding to the λa
n-tree can now be defined.

Definition 6.  For the R*-zone holds that first the shadow stones and points adjacent to the shadow stones are
taken. Next, if λa

n = 1, all quasi-liberties of all surrounding blocks from the above list of the same colour as the
attacker are added to the R*-zone. Conversely, if λa

n = 0, all quasi-liberties of all surrounding blocks of the
opposite colour of the attacker are added to the R*-zone.

Example. All attacker’s blocks touching the defender’s block and obeying the equality q < n – m + 3 are called
1-surrounding. In the example, we are analyzing the relevancy zone of a λa

2-tree with value 1 (in order to find
λ3-moves), and hence n = 2. Thus, in order for black blocks to be 1-surrounding, they must have fewer than n –
m + 3 = 2 – 1 + 3 = 4 quasi-liberties. In Figure 16, it is seen that b1 has 3 quasi-liberties, whereas b2 and b3
have 3 and 2 quasi-liberties, respectively. Hence, both b1, b2 and b3 are 1-surrouding blocks.

The blocks b1, b2 and b3 touch three white blocks: a is already in the list, and c1 and c2 are new. In order for a
white block to be 2-surrounding, it must have fewer than n – m + 3 = 2 – 2 + 3 = 3 quasi-liberties. Since c1 and
c2 have 3 and 4 quasi-liberties, respectively, these blocks are not 2-surrounding. As there are no 2-surrounding
blocks, the search for m-surrounding blocks is terminated, not worrying about the potential 3-surrounding
blocks d1 and d2 (even if they had had fewer than 2 quasi-liberties).

The true R-zone corresponding to the λa
2 -tree is shown in Figure 17, where it is seen that only two white

moves actuall y disturb/avert the threatened λa
2-tree of Figure 15 (all other white moves fail to disturb Figure

15). The two triangled white moves disturb the λa
2-tree because they render possible the inverted ladder shown

in Figure 19 – an inverted ladder, Black has no way of escaping.

Figure 18: Does white 2 save white a?

Figure 19: The threatening inverted ladder. Figure 20: Zone made by the inversion rule.



Preprint, ICGA Journal, December 2000 13

Now consider Figure 18, where White has just played the λ3-move white 2, disturbing the threatened λa
2-tree of

Figure 15. To find candidates for the next black λ3-move, the now fail ing λa
2-tree is played out, and all those

λ2-moves (and the λ1- and λ0-moves generating those λ2-moves) are recorded. The shadow of these stones is
shown as circles in Figure 20.

Using the inversion rule, the relevancy zone would look like Figure 20. This seems to be a safe bet for a R*-
zone containing the true R-zone of black disturbance moves (black λ3-moves following white 2 in Figure 18).
However, the inversion rule is not 100 percent safe, which is seen by the fact that a black stone at g is actually a
disturbance threatening λa

2 = 1. This is so, because after black g, the inverted ladder shown in Figure 19 no
longer works – and the example is constructed in such a way that after black g there is no other ladder that
works for White. Thus, black g should in principle be counted among the possible black λ3-moves in this
position, and thus be part of the R*-zone.

Obviously, g is not the best move for black to play in order to fend off the threatened ladder of Figure 19, but
we are interested in ensuring that all  possible black λ3-moves are generated, leaving it up to some successive
forward-pruning heuristic to cut some of them off afterwards, if they can safely be judged inferior to other
black moves. But at least we should know that moves like black g exist.

A much better black λ3-move would be a move at 1 in Figure 19. After such a move, White is close to being
dead, since White will soon run out of (inverted) ladder threats on the black block b1. But the interesting thing
about a black move at g is that it encloses the territory below g at the same time as threatening to kill a. Hence,
black g could be used as a forcing territory-enclosing move or as a ko threat.15

The question is how the R*-zone catches a move like black g? The answer is that the white block e is actuall y
surrounding the black block b1 in much the same way as c1, c2 and c3, even though it is, of course, much more
indirectly. It is possible to formalize this with help of additional concepts of so-called quasi-surroundedness
(white e quasi-surrounding b1) and so-called shadow blocks. For reasons of space and clarity of presentation
we do not elaborate on these concepts here.16

Fortunately, apart from the remaining problems of the inversion rule, the rule seems at least to contain some of
the right abstract concepts for the construction of reliable relevancy zones, even though it may still overlook a
few exotic moves. Such exotic moves are typically easy for the opponent to fend off and usually not relevant to
the solution of the problem.17

More work needs to be done in this field, and until some algorithm for the construction of R*-zones can be
proved to contain the true R-zones in all cases of Go block tactics, an algorithm like the proposed inversion rule
would just have to be seen as providing some useful foundations for the implementation of abstract topological
knowledge regarding open-space Go block tactics. Perhaps some kind of automated theorem proving could be
of use here (cf. the interesting approach in Cazenave (2001)); for another example illustrating the inversion
rule, the reader is referred to Thomsen (2000).

5. CONCLUSIONS AND SCOPE FOR FURTHER WORK

In conclusion, the λ-search method seems to be well suited for obtaining well-defined goals in two-player
board games like chess and Go, provided that passing is allowed or zugzwang is not a motive. As shown in
Section 2, λ-search offers the theorems of confidence and convergence, and the algorithm is simple and
requires negligible working memory in itself. As Section 3 indicates, in many cases λ-search is capable of
offering a large relative search-space reduction over standard alpha-beta (comparable to the relative reduction
of standard alpha-beta over minimax). In addition, the λ-search method often eases the implementation of
abstract game-specific knowledge, and λ-search can be combined with any search method for searching the λ-
trees, including proof-number search (e.g., combining null moves and proof numbers).

                                                          
15 Interestingly, a white λ3-answer to a possible black λ3-move at g in Figure 20 could be a move directly to the left of or
below g (giving an atari on the black stone at g). This would be yet another inversion.
16 With these additional concepts it is also possible to justify the inclusion of the liberties of the white ladder breaker in

Figure 13 in the R*-zone.
17 As noted before, such moves could still be relevant as forcing moves or ko threats. Also, in the context of finding double
threats, such moves can be highly interesting.
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In Go, the λ-search algorithm is capable of solving open-space tactical problems (tesuji), for instance, from
volume 4 of Graded Go Problems (Kano, 1990) with relative ease.18 Regarding the scope for further work, the
following points could be considered.

General points
• Can the algorithm be taught to find at least one of two (or more) goals by means of identifying double-threat

moves?
• Which kinds of search techniques are well-suited for λ-trees? How to manage the use of transposition tables

in the different orders of λ-trees? Which kinds of move-ordering techniques could be useful (iterative
deepening with transposition tables, history heuristic, etc.)? How to use proof-number search to solve the λ-
trees?

• Investigate a large number of realistic game problems with λ-search and other search methods, in order to
provide some real-world statistics on the eff iciency of the different approaches.

• Can zugzwang motives somehow be incorporated into λ-search?
• How to implement parallelism (multiple processors) most conveniently into λ-search?

Go-specific points
• Go block tactics: Solving inversions (cf. Subsection 4.2) as independent subproblems (local games) if

possible. Perhaps some of the tools described in Müller (1996) could be of use. Try to reduce the size of the
R*-zone as much as possible by means of solving all λn-trees twice – the second time using the best moves
(stored in a transposition table) from the first search. Try to classify certain kinds of  λ2-moves (cf. Kierulf,
1985).

• Implementing abstract knowledge regarding tsume-go, semeai and connection problems in the context of the
λ-search methodology.

• Using λ-search to search for eyes or Benson-immortali ty (cf. Benson, 1976, and Müller, 1997).
• How to handle seki or ko?
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7. APPENDIX: LAMBDA-SEARCH ILLUSTRATED ON CHESS

Consider the mating problem in Figure 21. In chess mating problems, a λ1-move is a check, but it is easily seen
that the black King cannot be mated with a sequence of white check moves. Hence, in this problem, λa

1 = 0.
However, the black King can be mated in a λ2-tree, as shown below.

Figure 21: Figure 22: Figure 23:
How to mate black? White λ2-moves. Black λ2-move following Re2-e1.  White λ2-moves following Kg6-h5.

In Figure 21, all the white λ2-moves (moves threatening a forced mating check sequence) are shown. Of these
seven white moves, three of them are direct checks, in contrast to the four other more quiet moves (Re2-e3,
Re2-e1, Rf2-f3 and Rf2-f1). For instance, after white Re2-e1, if Black passes, a mate results from Re1-g1+,
Kg6-h7/h6/h5, Rf2-h2++. Now, consider Re2-e1. As shown in Figure 22, there is only one black λ2-move
averting the threatened mating check sequence: Kg6-h5. After Kg6-h5, White has no mating check sequence.
His best try would be Re1-h1+, Kh5-g4, Rh1-g1+, but it peters out after Kg4-h3. In Figure 23, the six white λ2-
moves following Kg6-h5 are shown. Of these, four are direct checks, while the more quiet Re1-g1 and Rf2-g2
threaten mating check sequences. After either Re1-g1 (or Rf2-g2), Black cannot avoid a mating check sequence
no matter where he moves, implying that there are no λ2-moves following Re1-g1 (or Rf2-g2). Hence Black
can be declared dead.


