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LAMBDA-SEARCH IN GAME TREES
— WITH APPLICATION TO GO

Thomas Thomsen!

Copenhagen, Denmark

ABSTRACT?

This paper proposes a new method for seaching two-valued (binary) game trees in games
like chessand Go. Lambda-seach uses null moves together with different orders of threa
sequences (so-cdled lambda-trees). Lambda-search focuses on threds and threa aversions,
but still guarantees to find the minimax value. The guarantee presuppases that the game
rules alow passing or that zugzwang is not a motive. Using negligible working memory in
itself, the method seems able to offer a large relative reduction in seach spaceover the
standard a pha-beta method (comparable to the relative reduction in seach spaceof apha-
beta over minimax). Among other things, the reduction depends upon how non-uniform the
seach treeis. Lambda-seach is compared to ather analogous approaches, such as null-
move pruning and proof-number search. Moreover, it is explained how the cncept and
context of different orders of lambda-trees may ease and encourage the implementation of
abstrad game-spedfic knowledge. This is illustrated on open-space Go bock tadics, by
distinguishing between different orders of ladders. In close relation, some possbly
fundamental work regarding an abstrad formalization of the mncept of relevancy zones
(zones outside of which added stones of any colour cannot change the status of the given
problem) is offered.

1 INTRODUCTION

Lambda-seach (A-seach) is a general method for searching a two-valued (binary) game tree It isinspired by
the so-cdled null-move pruning heuristic known from computer chess However, A-search works in a diff erent
and much more well-defined way, since it operates with dired threas, threas of forced threa sequences, and
SO on.

Let us dart with a preliminary ideaof what A-seach is. In chess the goa of the game is mating the oppasing
King. A dired threa on the King is cdled a check we cdl a sequence of chedks that ends up in mating the
King a forced mating check sequence. However, a threat of such a forced mating chedk sequence is not
necessarily a check move itself. We cdl such athrea a meta-threa — being of a second order compared to the
first—osrder chedk moves in the dieck sequence It can be aquiet move (in other games cdled an enclosing
move”).

Similarly, in Go, a dired thred on a block of conneded stones is cdled an atari. A forced atari sequence
resulting in the cature of the block is cdled a working ladder (Japanese: shicho). Hence, in this context, a
(meta-)threa of a forced thred sequence would be aladder thred, which does not have to be an atari itself.
Consider Figure 1: Bladk cannot capture the white stone a in a ladder, becaise of the ladder block (i.e., the
other white stone). An example of such afail ed attempt is shown in Figure 2. Now, providing that Blad gets a
free move (a move that is answered with a passby White), there ae anumber of ways in which Bladk can
make the ladder work. One of the posgbiliti es could be playing afreemove & c in Figure 3. This threaens the
ladder shown in Figure 4. Another posshility could be playing at d in Figure 3, threaening the ladder shown in
Figure 5.

! stockholmsgade 11, 4. th., DK-2100, Copenhagen, Denmark. Email: thomas@t-t.dk, http://www.t-t.dk.

2 This article is a slightly adapted and improved version o a paper delivered under the same title on October 27, 2000 on
the Seacond Computer and Games Conference (CG' 2000 in Hamamatsu, Japan. The paper is published as Thomsen (2001).
We kindy thank the Editors T.A. Marsland and |. Frank as well as Springer-Verlag for the preparedness to alow an
(enriched) reproduction.

5 Note: for readers not famili ar with Go, the gpendix contains a thessexample similar to the Go example given below. In
chess goals other than mating are, for instance, trapping the opponent’s Queen, creding a pased Pawn, or promoting a
Pawn.
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Figure 1: How to cepture & Figure2: A failing ladder (\'=0). Figure 3: Blad A*>moves?

22 4

‘3 .8

Figure 4: Working ladder (\’=1) after bladk c. Figure 5: Working ladder (\'=1) after bladk d.

The moves ¢ and d in Figure 3 are thus two indired threas on the white stone a, compared to a dired (first-
order) atari. A posshle generalization of the cncept of thredsis the main theme of thisarticle.

We start introducing the terminology used. A dired threa sequenceis cdled a A’-tree consisting solely of A*-
moves (cheds/ataris for the atacker and moves relieving these for the defender). The A’-treeis a standard
seach tree solvable by means of any minimax seach technique, with value 1 (successfor the atacker) or 0
(success for the defender).

At the next level of abstradion, a A-move for the atadker is a move that threatens a A>-treewith value 1, if the
attacker is allowed to move again. Figure 6 depicts all possble blad A*moves given unlimited search depth;
i.e., al bladk moves threaening aworking ladder (or adired capture; hencethe two atari moves on white a are
also A%-moves) if left unanswered. If for instance, 1 in Figure 7 (= ¢ in Figure 3) is chosen, Blad threaens the
ladder depicted in Figure 4. Figure 7 then shows all passible white moves averting that thred. Hence, in the
general A*-tree the two white moves in Figure 7 are A>children of blad 1, and in Figure 8, the two bladk
moves are A\-children of white 2 (again reviving the ladder-threa).

Figure 6: Black A>movestokill a.  Figure 7: White A>moves Figure 8: Blad A>moves
after blad 1. after white 2.
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In this way, aA\*-tree ca be built out of A>moves; the A%-moves are threas of threa sequences (ladder threas)
for the atacker, and aversions of threa sequences (ladder breskers) for the defender.* In the gpendix, we
provide asimilar chessexample (seeFigures21to 23.

In the mntext of Go block tadics, aA*tree ca be interpreted as a net or loase ladder (Japanese: geta or yurumi
shicha), but the order of A can easily be > 2. For instance, loose loose ladders (\-trees) are quite cmmon in
open-space Go hlock tadics, the A-trees being built up of A*-moves, originating from A*trees. Tsume-go
problems (enclosed life/deah problems) or semed (raceto-capture) usually involves high-order A\"-trees
(mostly n = 5), and connedion problems (trying to conned two blocks of stones) often feaure high A-orders,
too. For example, in Figure 9, white a can be killed in a A’-tree (the solution is black b, 21 dies/half-moves),
Wheregas in Figure 10, bladk a and b can be mnneded into one block in aA*-tree(the solution isblad c or d, 15
plies).

Figure 9: Blad to kill whitea (). Figure 10: Blad to conned a and b (\%).

In Sedion 3, we show that A-seach, compared to standard apha-beta, can often yield large reductions in the
number of paositions generated in order to solve agiven problem, espedally if the seach treeis highly non-
uniform and as such exploitable by A-seach. Hence, the A-seach methoddogy might be useful for goal-
directed search in almost any two-player, full-information, deterministic zeo-sum game.®

The point about A-seach is that in eat A-tree al legal moves are not just being blindly generated and
ploughed through, but instead the search focuses on those making and averting (more or lessdired) threds.
This implicit move ordering direds the search towards its goal, and even though the A-search methoddogy
does not in itself contain any knowledge of the mncrete game problem analyzed, A-moves often seem to have
at least some minimum of meaning or purpose (cf. Figures 6 to 8, or Figures 21 to 23, in contrast to the often
random-looking move sequences generated by alpha-beta search.

In addition to this implicit threa-based move ordering, the A-search approach can often ease and encourage the
implementation of abstrac game-specific knowledge. For instance, regarding A'-moves in chess mating
problems, there ae up to three possble ways of relieving a check (capturing the checking piece interposing a
piece or moving the King). Similarly, regarding A'-moves in Go block tadics (ladders), the atadker must
always play on one of the defender’s liberties, whereas the defender must always play on his remaining liberty,
or capture asurrounding block. Sedion 4 describes an attempt of formulating some astrad/topdogicad Go-
tadica knowledge regarding general A™-trees. The astrad rules rely both upon the value of the A-order n, and
on information generated during search of lower-order A-trees.

4 As most readers with a basic knowl edge of Go would know, the best blad A2-moveisbin Figure 3, after which there ae
no white A>-moves. Another way of stating this is that after bladk b, there is no way for White to avoid being killed in a
subsequent ladder (A*-tred), and so White can be dedared urconditionally dead.

5 Note generally that if A"= 1, the dtadker has to spend n + 1 extra moves (moves that can be answered by a pasdtenuki by
the defender) in order to “exeaute” the goal. Hence, in Figure 9, white a can be amnceved o as having n + 1 = 8 effective
liberties, instead of only the 5 red/visible ones. If the bladk block surrounding White was vulnerable, such knowledge
would be aqucia in, for instance, semed problems (cf. Mdller, 1999), or regarding the difficult problem of “opening up”
tsume-go problems (cf. Wolf, 1996).

8 Provided that the game rules all ow passng, or zugzwang (move mmpulsion) is not amotive for obtaining goals.



2. FORMALIZING THE A-SEARCH METHOD

In this dion, the A-seach method is formalized in its most general form, not tied to the context of any
spedfic game. We start by defining the A"-tree

Definition 1. A A"-treeis a seach tree (with the @m to achieve asingle well-defined goal) which consists
solely of A"-moves (defined in definition 2); aA,-treeis aA"-treewhere the dtadker moves first.

The minimax value of aA™treeis either 1 (successfor the atacker) or 0 (successfor the defender).” A nodeisa
led (terminal node) if the node has no children because there ae no legal A"™-moves following it. If thisis o,
the value of the leaf is 1 if the defender is to move, and Oif the atacker isto move. The A-treeis particularly
simple: A2 = 1 if the atacker’s goal can be obtained diredly by at least one of the atacker’s legal moves, and
A2 = 0 atherwise.

Definition 2. A A\"-move is a move with the following characteristics. If the attacker is to move, it is a move
that implies — if the defender passes — that there exists at least one subsequent A,-treewith value 1, 0< i < n-1.
If the defender isto move, it is a move that implies that there does not exist any subsequent A, -treewith value
1,0<i<n-1

Example. (Go block tadics) For the mnstruction of a A*-tree see Figure 3. Here, a bladk play at ¢ is a A*
move. After c, provided that White passes, A,” = 0 (the block cannot be catured diredly), but A, = 1 (the
block can be catured in aladder, cf. Figure 4).

After Blac has played the A>-move & c, we have the position of Figure 7. Here, a white move & any of the two

marked pdntsisaA?child of the bladk A%-move, since after any of these two white moves, A,” = Al = 0 (Black
cannot follow up with either adired cgpture or aworking ladder). The A-method isillustrated in Figure 11.

white pass

A1

Figure 11: The A"-tree

In Figure 11, bladk a isaA"™-move, becaise — if White passes — it can be followed up with aA,"-tree with value
1 (cf. the small treeto the left). Considering the white move b, thisislikewise aA"-move, sinceit is not foll owed
by aA,-treewith value 1 (cf. the small treeto the right®). Other legal bladk and white moves are pruned off,
and hencethe A"-treegenerally has a much smaller average branching fador than the full seach tree Note that
in al the threedepicted A-trees the dtadker moves first, and note dso that the dgorithm works reaursively in the
“horizontal” diredion, so that the moves in the small A" -trees to the left and right are in turn generated by A"
trees, and so on downwards, ultimatively ending up with A\°-trees. Note finally that a A" -tree generally contains
much fewer nodes than a \"-tree After the two definitions above, it istime to introduce an important theorem.

" The terms “attacker” and “defender” are abitrary and could just as well be “/eft” and “right”. For instance in Go,
“attadking” could just aswell be trying to conned two blocks of stones, and “defending” trying to kegp them disconneded.
8 |n fad, small A" %trees, A, trees, and so on, should also be included at the left and right (cf. definition 2, but these ae
omitted here for the sake of clarity.
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Theorem 1 (confidence). If a A, -treeseach returns the value 1 (success for the dtacker), thisis the minimax
value of the position — the atacker’s goal can be adieved with absolute confidence.

Proof: For a)\,-treeto return the value 1, the atacker must in ead variation be ale to force the defender into
positions where he has no A"™-moves (cf. definition 1). The defender not having any A"™-move means that no
matter how the defender plays, the atadker can follow up with a lower-order A-treewith value 1: A, = 1,0 < i
< n— 1. By the same reasoning as before, this in turn means that the atadker can force the defender into
pasitions where he has no A'-moves. By reaursion, this argument can be repeated for lower and lower orders of
A-trees, until we (in at most n steps) end up with a A%tree And if a A.-tree has value 1, the goal is obtained
diredly (cf. definition 1). O

This theorem is crucial for establishing the reliahility of A-seach. Astheorem 1 shows, if a A\, -treereturns the
value 1, the dtadker’s successis a proven success no matter how the defender attempts to refute it, so if a A-
seach findsawin for the atadker, one an have asolute confidencein it.

Theorem 1 is obviously not symmetric. If a A,"-tree seach returns the value 0, this does not entail that there
could not be aforced attadker’swin in the full game tree It only means that the defender cannot lose by means
of attacker’s A"-moves, but there might very well be aforced win for the atacker lyingin wait in trees of order
n+1 or higher.

Example. (Go block tadics) If Blad plays a working ladder (\'=1), he is certain to kill the white block: the
defender cannot avoid being kill ed. But the other way round, if a white block cannot be killed in a ladder, this
does not, of course, imply that it could not, for instance, be kill ed in aloose ladder.

Seen in the light of the @ove, given some spedfic goal for the atacker to achieve, and provided that the
attadker cannot achieve the goa direaly within the first move (A\.’ = 0), the strategy will be to try out first a A,
tree If A, = 1, we ae finished (cf. theorem 1). If Al = 0, we @ntinue with a A,>-search, and so on, urtil time
runs out. If we end up with A" = 0 for some value of n, we cannot say anything authoritatively on the status of
the problem, other than that the defender survives a A, -attack.

The next question is what happens asymptoticaly as A™trees of higher and higher order get searched? Provided
that we know a priori that the dtacker’s goal can be readed within at most d plies by optimal play (d being an
oddnumber), can we be sure that the value of A" will converge to 1 for some n, as n tends towards infinity?

If the game-rules allow passing, the axswer is yes, and in that case it is possble to prove that n < (d-1)/2, as
shown in theorem 2, for which we need lemma 1.

Lemma 1. Consider afull seach tree onsisting of al | egal moves for bath players. In this seach treg consider
anode x where the dtacker isto move. Assume that we ae not considering the root node (move #1), but some
attadker’s move deeper down the tree(i.e., some odd move number = 3). Consider the subtree unfolding from
node x. For the dtadker to be ale to force the defender into a A, ™-treewith value 1 expanding from node x, the
attacker must have been threatening A" = 1 when he was to move last time. Had he not been threaening A" =
1, the defender could have passed, after which (cf. definition 2) the value of a subsequent A, -treewould have
been 0.

Example. (Go block tadics) In order to be able to force the defender into a working ladder (A\,' = 1), the
precaling attadker’s move must have been a ladder-thred. If this had not been so, the defender could have
passed, and the ladder would still not work.

Theorem 2 (convergence). Given that the dtacker’s goa can be readied within at most d plies by optimal play
(d being odd), then (1) the value of A," will convergeto 1, and (2) for n holds: n < (d-1)/2.

Proof: Consider again the full search tree onsisting of al 1egal moves for bath players. Assume that we know
apriori that there exists aforced win for the atacker in at most d plies, d being some odd number = 1. Consider
anodey at depth d — 1 (with the atadker to move) after which the forced win is exeauted at depth d. This
means that the tree expanding from y is a A -tree with value 1. Using lemma 1, this again means that the
attacdker must have been threatening A, = 1 when he played last time (i.e., played a move & depth d — 2).



Threaening A" = 1 isthe same & playing aA'-move; hencethe atacker must have played aA'-move at depth d
-2

In order for the atacker to be ale to forcethe defender into this A*-move & depth d — 2, it must have been part
of aA,-treewith value 1. The first attacker’s move in this tree @n be & any depth d;, where1<d; < d — 2 If
d; = 1, we aefinished (hence establishing n = 1). Else, if 3 < d; < d -2, in order to force the defender into this
Aa-treewith value 1, the dtadker must have been threatening A.> = 1 (= playing a A*-move) at some depth d,,
wherel<d,<d; -2

This goes on reaursively for A-trees of higher and higher order (ead time moving at least two plies upwards in
the full seach tree), so in the worst case we end up with a tree of order n = (d-1)/2. This reasoning can be
repeded for al nodesy at depth d — 1 after which the forced win is executed at depth d, and henceit is proved
that n< (d-1)/2. O

Example. (Go block tadics) Assume that we know a priori that the gtacker can kill the defender in at most 5
plies. The atadker's move #5 must have been the cature (taking the stones off the board), so the atadker’'s
move #3 must have been an atari (\'-move) — atherwise the defender could have passed, and the stones could
not have been taken off the board at move #5. Regarding the atacker’s move #1, it can have been a(nother) A
move if the whole killing sequence is a working ladder (A'-tree with value 1). Otherwise, the first attacker’s
move ould have been a A>-move (loose ladder move), threaening A,' = 1 (an ordinary ladder). But if the
attadker’s move #1 had not been either a A™-move or a A%-move, the defender could have passed at move #2,
and there would have been no way for the dtacker to establish a working ladder (\*-tree) at move #3, and
hence no way to kill the defender at move #5. Thus, if d = 5, the A-seach can only be of order 1 or 2, meaning
that if d = 5 and a A%-seach returns value 0, the problem cannat be solved in 5 plies. This corresponds to the
inequality, sincethe formula states that n < (d-1)/2 = 2.

Considering games like chesswhere passng is not all owed, theorem 2 does not hold, sincethe aility to passis
aprerequisite for lemma 1. However, apart from zugzwang motives (e.g., in late chess endgames), thisis not a
problem if the defender has always at least some harmlesgnon-suicidal move to play instead of a pass move.
Hence, for pradicad purposes, theorem 2 also applies to goals such as mating in middle-game chess paositions.
In additi on, it should be noted that theorem 1 appli es whether passng is allowed or not.

Thus, theorems 1 and 2 show that A-search is not to be interpreted as some heuristic forward-pruning technique,
since ah-seach — in the worst case searched to A-order n = (d—1)/2 —returns the minimax value, provided that
passng is alowed or zugzwang is not a motive. Some pseudo-code mntaining the A-search methoddogy can
be found in Thomsen (2000).

3. COMPARING A-SEARCH WITH OTHER SEARCH METHODS

After the formal proofs of confidence axd convergence the question is how effedive the A-seach method
redly is. In this edion we compare the A-seach method to three other tedhniques, viz. standard alpha-beta,
apha-betawith ndl-move pruning, and proof-number search.

31 Standard alpha-beta

With the help of some simplifying assumptions it is posdgble to indicae the effedivenessof A-search compared
to standard alpha-beta. Below, it is siown that the effedivenessgenerally depends on the ratio of the branching
fador of the A-seach trees and the branching factor of the full search tree in combination with the A-order n.

Consider a general A-seach treeof some order n, with the dtacker moving first, and assume that an attacker’'s
win exists in at most d plies (d being odd). Moreover, assume that passng is allowed or zugzwang is not a
motive. We will now try to count the total number of positions generated in order to seach such a \"-treg
including the positions generated in the lower-order A-trees. It is assumed that minimax is used in the A"-tree
and as reference dgorithm for the full search tree The reasons for using minimax are explained below.
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Let is further assume that B is the arerage branching factor of the full seach tree (i.e., the number of lega
moves in each pasition: in chess, around 30to 40, and in Go around 200to 250). Asaume furthermore that all
A-trees have the same average branching fador, b (b being < B). In order to generate the atader’s moves at
depth 1 in the A"-treg all legal attacker’s moves must be examined, to see whether they are followed by some
N-tree (i < n—1) with value 1 (cf. a in Figure 11). This amourts to Bn A'-tree seaches (the \'-trees being of
orderi =0, 1, ..., n=1). Subsequently, at depth 2 in the A"-treg for ead of the defender’s A"-nodes, all legal
defender’s moves must be examined, to seewhether they are followed by N'-trees (i < n—-1) with value 0 (cf. b
in Figure 11). Thisamountsto atotal of bBn A'-treeseaches (the A'-trees being of orderi =0, 1, ... , n-1).

Hence, in order to generate dl A"-moves at depths 1 and 2, corresponding to the threebladk moves and the nine
white answers in the A™-treein Figure 11, (1+b)Bn number of A'-trees must be analyzed (the A'-trees being of
orderi =0, 1, ..., n-1), al of them to depth d-2. By a similar argument, the A"-moves at depths 3 and 4 in the
A-treerequire that (b*+b®)Bn number of A'-trees (the A'-trees being of order i = 0, 1, ..., n-1) are seached to
depth d—4, and so on.

Now the question is how deeply the A\"-tree needs to be seached? This depends on circumstances, and the
depth will generally be between 2 and (d-1) — 2(n—1) plies. To simplify, we asume the worst case, namely that
the A"-treeneeads to be searched to its maximum depth, i.e., (d-1) — 2(n-1) plies.

The @ove reasoning leas to the reaursive dgorithm of Figure 12 — given in pseudo-code — for the total
number of positions generated in order to search aA"™-treewith seach depth d.

| ambdaMovesGener at ed(n, d) {
if(n==0)return B;
sun¥0,;
for(i=2;i<=(d-1)-2*(n-1);i=i+2) {
for(j=0;j<=n-1;j=+1) {
sumesumt( b** (i -2) +b** (i -1))*B*| ambdaMovesGenerated(j,d-i);
}

}

return sum

}

Figure 12: Pseudo-code for counting the total number of positions generated by aA™-search to depth d.

The reaursion ends with the number of generated movesin the A\°-tree sincethe dgorithm knows that a A%-tree
demands B positions to be evaluated. For given values of B and b, the @ove-mentioned reaursive formula is
thus capable of estimating the total number of positions generated in a A"-search to depth d, where dl the A"-
trees are searched by means of minimax. This estimate can be cmpared to (B*'-1) / (B-1), being the
estimated total number of paositions generated in a minimax-seach. Thus, for given B, b, n and d, we define the
reduction fador as follows: r = [(B*~1) / (B-1)] / lambdaM ovesGenerated(n, d).

The reader might wonder why minimax is used instead of alpha-beta? This is only because assuming minimax
makes the reduction fador easier to compute — the paint is that using alpha-beta (or any other seach technique)
instead of minimax would not alter the reduction fador, assuming that apha-beta (or any other seach
technique) works equally efficiently in the A-trees and in the standard (full) search tree The dficiency of
apha-beta pruning thus cancels out in the numerator and denominator of the reduction fador, so that the
reduction fador can also be interpreted as the dficiency of the A-search technique (using standard alpha-betain
the A-trees) over standard alpha-beta.

To provide an ideaof the magnitude of the reduction fador, we show in Tables 1 and 2 the results of (b, B) =
(4, 40) and (b, B) = (8, 40), as cdculated by the dgorithm of Figure 12.



n=1 n=2 n=3 n=4 n=5
d=3 8
d=5 772 65
d=7 76,942 3,174 482
d=9 7,692,425 209,432 16,192 3,328
d=11 769,231,503 15,625,505 812,550 88,201 21,791

Table 1: Reduction fador, A-seach relative to standard alpha-beta, (b, B) = (4, 40).

n=1 n=2 n=3 n=4 n=5
d=3 4.6
d=5 112 20
d=7 2,804 251 76
d=9 70,112 4,173 666 254
d=11 1,752,804 78,158 8,530 1,810 781

Table 2: Reduction fador, A-seach relative to standard alpha-beta, (b, B) = (8, 40).

For comparison we provide some alditional results, viz. the reduction fador of standard apha-beta relative to
minimax. It is sown in Table 3.°

good average bad
move or der move or der move or der
d=3 15 3.9 1.8
d=5 60 7.8 2.4
d=7 238 15.6 31
d=9 952 312 4.2
d=11 3,810 62.4 5.6

Table 3: Reduction fador, standard a pha-beta relative to minimax, B = 40.

Tables 1 and 2 show that the largest reductions are found for n =1, i.e,, if the problem can be solved by means
of a number of dired attacker’s threas (for chess mating: checks; for Go block tadics: ataris). For growing
depth, this renders a huge reduction fador relative to standard alpha-beta, both if the thredas and threa
refutations on average make up 10 percent of the legal moves (Table 1), or 20 percent (Table 2). This
corresponds to the full search tree being highly non-uniform in a way exploitable by A-search. But even for
more saturated problems, i.e., problems needing a larger value of n, the reduction fador is gill impressive. For
instance, with b/B being 20 percent asin Table 2, a A%-seach to a depth of 5 plies would still — on average —
require only about 1/20 o the positions generated with standard alpha-betato depth 5. This reduction fador is
comparatzloe to the reduction fador of good a average move-ordering apha-beta over minimax at depth 5 (cf.
Table 3).

From the tables we observe that by using A-seach instead of standard apha-beta the relative reduction in
seach spaceis comparable to the relative reduction in search spaceby using apha-beta instead of minimax,
espedally for low saturation problems with n < (d-1)/2. It is posshble to prove that — for large B and b, and for
n relatively small compared to (d-1)/2 —the reduction fador, r, can be gproximated by:

ng-"-l (1)

"t M %Ez w(x)d—y)!

n-1

® Note: In the cdculation d these reduction fadors it is assumed that the best attacker’s move is foundafter 10 tries (good),
20 tries (average), or 30 tries (bad). So for instance for t = 3, the reduction for good move ordering is cdculated as
follows: (1+40+40P+40°%)/(1+10+10-40+10-40-10). It should also be noted that the move ordering can often be improved
upon in anumber of ways, but here we focus on standard apha-betaonly.

10 This could, for instance, be amodel of those mate-in-two problems in chesswhere the first attader’s moveis not a thedk
(whereas the next isthe dhedmate). In that case —a A*-treesearched to depth 5 —a reduction factor of about 20 would be
expeded. Alternatively, if the first attacker's move is a chedk (and the next the chedkmate) — a A-tree— the reduction
factor would be expeded to be dout 112.
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In that case, the reduction fador depends on the size of B compared to b in the (d—n—1)th power, divided by a
binomial coefficient. A possble interpretation is: assume that we had some divine knowledge, knowing in each
pasition of the full search treewhich b out of the total of B legal moves contain the best move (thus in eat
pasition having only to consider b instead of B moves). In that case, the reduction factor would be r = [(B*—
1)/(B-1)] / [(b™*-1)/(b-1)] = (B/b)". However, since we do not have accesto such divine knowledge, lower-
order A-trees have to be seached in order to find the b interesting moves (this being more wstly for higher n),
explaining the binomial coefficient and the fad that the exponent is (d-n-1) rather than just d.

From the formula it is en that the aucia fador for the reduction fador is the relative size of b in relation to
B. Thus, we would exped similar reduction fadors (tables like Table 1 and 2) for (b, B) = (8, 40) and, e.g., (b,
B) = (50, 250), whereas the reduction fadors for, e.g., (b, B) = (8, 250) would be much larger than for (b, B) =
(8, 40). It should, however, be enphasized that al the &ove cdculations must be taken with a large pinch of
salt, since the cdculations just yield some theoreticd and not empiricd indications of the strength of A-search
over standard alpha-beta. A more aithoritative estimate of the efficiency of A-seach would imply analyzing a
large number of redistic game problems with diff erent search tedhniques, including A-search, thus being able to
offer some red-world statistics on the relative merits of the different approaches.

3.2 Null-move pruning

Alpha-beta augmented with null-move pruning (for an overview, see Heinz (1999) might seem similar to A-
seach, but even though the underlying ideais quite similar, there ae & least four important differences — apart
from the fad that alpha-beta augmented with null-move pruning can be diredly applied to non-binary seach
trees (in contrast to A-seach).™

Firgt, in A-seach, only the defender makes null moves, and A-search does not use depth reduction when
seachingthe lower-order A-trees.

Seand, aA"-seach controls the total number of admissble defender’ s null moves in any branch between some
node and the roat; this number is aways < n. Knowing the wncrete A-order of a problem (i.e, distinguishing
clealy between different orders of threas) often fadlitates the implementation of abstrad game-spedfic
knowledge.

Third, because null-move pruning operates with a depth-reduction factor for searching the subtreefollowing a
null move, an erroneous result might occasionally be returned. Null-move pruning with depth reduction works
extremely well in many applicaions (for instance, in computer chess), but it cannot offer the same @solute
reliability as A-seach (cf. the theorems of confidence and convergence).

Finally, A-seach is not tied to any spedfic seach technique for seaching the A-trees, thus opening wp the
posshili ty of easily combining null moves with, for instance, proof-number search.

3.3 Proof-number search

A rather recent and popular search technique for searching two-valued seach trees is cdled proof-number
seach (Allis, 1994 Allis, Van der Meulen and Van den Herik, 1994). Like A-search, proof-number seach
exploits non-uniformity of the search treein an attempt to search the thinner parts of the search treefirst. till,
the differences between the two approaches sould be pointed out — apart from the fad that proof-number
search has no problems with zugzwang motives (in contrast to A-search).

First, proof-number search uses a large working memory overhead, since the whole (or at least much of the)
seach treeneals to be stored in memory. In contrast, A-search using, for instance, standard al pha-beta (without
transpasiti on tables etc.) as the search engine has negli gible working memory requirements.

11 The reader might wonder whether A-search could somehow be used for non-binary search trees. A paosshility would be to
define the goa as follows: if a led node has an evaluation vaue larger than some threshold, the vaue of the node is 1,
otherwise 0. So, A-search could be used in the same way as a null-window apha-beta seach. However, a general non
binary seach treeis usualy very uniform (unless for instancein chess a hidden mate exists), implying n = (d—1)/2. Hence,
alimited reduction facor (full saturation; cf. the diagonas of Tables 1 and 2) will appea.
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Seoond, it is not an easy task to incorporate transpasition tables into proof-number seach. In contrast, if apha-
betais used to search A-trees, transposition tables can be used with as little difficulty asin standard alpha-beta.

Third, A-search depends on some technique for searching A-trees. But the concrete search engine could be
anything as long as it works — including proof-number search. Hence, proof-number search could be combined
with A-seach with very little dfort (thus combining null moves and proof numbers), and even if some new
powerful treeseaching technique will be invented, A-search would most likely benefit from it as well.

Finaly, and very importantly, as mentioned in the comparison with null-move pruning, the passibility of
distinguishing clealy between different orders of A\"-trees — i.e., in ead position knowing the cntext of the
value of n (and in addition: having accessto information generated in lower-order A-trees) — often makes it
easier to implement abstrad game-specific knowledge. Additionally, the distinction between different orders of
A-trees makes it possble to concentrate time- and/or memory-expensive techniques on the highest-order A-
trees. Time-expensive techniques are, for instance, elaborate move-ordering schemes and pettern matching, and
examples of memory-expensive techniques are the use of transposition tables, and the use of proof-number
seach.

4. IMPLEMENTING ABSTRACT GAME-KNOWLEDGE (GO BLOCK TACTICYS)

41 Therelevancy zone

One of the hardest problems in Go is how to limit the seach in open-space Go block tadics by means of
charaaerizing some apriori zone of relevance that is, some aeaof the board outside of which the aldition of
any number of bladk or white stones in any configuration cannot alter the status of the problem. For instance,
white a in Figure 3 cannot be caight in a normal ladder, an example of which is shown in Figure 2. Adding a
freeblac stone & e in Figure 3 will not alter the status of the ladder (still not working), whereas a free black
stone & f will make the ladder work. Actually, adding a freebladk stone & any of the marked pdntsin Figure
6 makes the ladder work; hence eah of these paintsis apossble A>move (loase ladder move) for the atacker.

However, looking at Figures 2 and 6 it does not take long before one redizes that the true relevancy zone seen
in Figure 6 should be somehow derivable from or dependent upon the shadow of the stones played in Figure 2.
So, the ideais that the true relevancy zone, cdled the R-zone, is stuated inside aiother zone, cdled the R'-
zone, consisting of all stones (i.e., shadow stones) played to prove that a lower-order A-seach (an ordinary
ladder) cannot kill the white stone in Figure 3. If al the moves of these failing ladders (of which one of them is
shown in Figure 2) are recorded (circles), and all points adjacent to the drcles (liberties of the shadow stones)
are alded as well (squares), theresult is ®enin Figure 13
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Figure 13: Relevancy zone for Black? Figure 14: Iswhite a dea after bladk 1?

12 Note that in this and the following examples, there is no limit on the maximal seach depth. With limited search depth,
the relevancy zones would be smaller. Also, note in Figure 13 that the liberties of the white ladder bregker are alded (more
onthisin Subsedion 4.2 on inversions).
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Definition 3. A shadaw stone corresponding to a\"-treeis a stone that is played in this A"-treg or in one of the
lower-order A-trees cdled from the A"-tree

Comparing Figures 6 and 13 it is ®en that the R-zone of Figure 6 is contained within the R"-zone of Figure 13.
This method looks rather simple and reduces the number of points considered for finding the atacker’s A
moves from 355to 36 By using the method, a paint around e in Figure 3 will never be mnsidered as a A*
move, whereas a point such as f would. However, there is a problem, namely what to do with so-cadled
inversions?

4.2 Inversions

In Go bock tadics, the dtacker tries to confine the defender, whereas the defender tries to bresk loase or make
two eyes. The defender can break loose by either moving/extending out, or trying to capture some of the
attadker’s surrounding stones. We denote the defender’s trying to cach some dtacker’s gones an inversion,
sincethe roles are switched.

To yield an example, we mnsider the defender disturbing/averting the threa of a loose ladder (\*-tred by
means of an (inverted) ordinary ladder (\'-tree). An example is shown in Figure 14.

Bladk has just played 1, a A3-move threaening to kill white a in a A*-tree (loose ladder). Blac 1 is a standard
tesuji for capturing a block like a, but before dooming a dead, we need to consider the fad that the surrounding
blac block b is vulnerable due to a limited number of liberties. Hence the question is. what are the possible
white A®-moves foll owing blac 1?

In order to answer this question, we play out the threatened A*-tree kill ing white. Thisis shown in Figure 15.*3
The moves can also be found as circles in Figure 16.** Since the bladk block b1 has threeliberties only, these
liberties are dso added to the R'-zone. The general rule for doing this makes use of the mncept of quasi-
liberties, defined below.

W
oy

90

Figure 15: Killing Whitein ai? Figure 16: Relevancy zone for White. Figure 17: White A*-moves.

Definition 4. A quasi-liberty corresponding to a A"-treeis a liberty that is not coincident with a shadow stone
corresponding to the A"™-tree (The number of quasi-liberties will always be < the number of red liberties.)

Example. In Figure 16, the block b1 has 3 quasi-liberties (coinciding with its red liberties $nce none of the
points surrounding bl are drcles (shadow stones)). The blocks b2 and b3 have 3 and 2 quasi-liberties,
respedively.

Using the aoncept of quasi-liberties, the inversion rule can be defined as foll ows.

13 The sequencein Figure 15 contains bath A%, A'- and A°-moves (bladk 1 isaA®-move, blad 3isaA’-move, and black 5 is
aA’-move), since dl movesin any lower-order A-tree ae “recorded” to yield the shadow stones.

14 The reason why there ae 8 circled moves in Figure 16 compared to the 5 shown moves in Figure 15 is that the shadow
stones in Figure 16 (circled moves) also contain white moves played at the three etra points. These moves are (non
working) white escgoe dtempts.
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Definition 5. Inversion rule: Consider a A, -treewith value 1 or 0. Call the defender’s block a 0-surrounding
block. Now, reped the following form=1, 2, 3, ... , c: Find al blocks of oppasite wlour touching the drealy
found (m-21)-surrounding block(s). Of these new potential m-surrounding blocks, only keep those that have not
been found arealy for smaler m, and for which the following is observed: g < n — m + 3, where q is the
number of quasi-liberties of the block.

Given this definition, the R"-zone mrresponding to the A,-tree @n now be defined.

Definition 6. For the R'-zone holds that first the shadow stones and pdnts adjacent to the shadow stones are
taken. Next, if A" = 1, all quasi-liberties of all surrounding blocks from the eove list of the same colour as the
attadker are alded to the R'-zone. Conversely, if A," = 0, all quasi-liberties of all surrounding blocks of the
oppasite colour of the atadker are alded to the R -zone.

Example. All attacker’s blocks touching the defender’ s block and obeying the equality g <n—-m+ 3 are cdled
1-surrounding. In the example, we ae analyzing the relevancy zone of a A -treewith value 1 (in order to find
A3-moves), and hencen = 2. Thus, in order for bladk blocks to be 1-surrounding, they must have fewer than n —
m+ 3 =2 -1+ 3 =4 quasi-liberties. In Figure 16, it is sen that b1 has 3 quasi-liberties, whereas b2 and b3
have 3 and 2 quasi-liberties, respedively. Hence, both b1, b2 and b3 are 1-surrouding blocks.

The blocks b1, b2 and b3 touch threewhite blocks: a is aready in thelist, and c1 and c2 are new. In order for a
white block to be 2-surrounding, it must have fewer thann—m+ 3 =2 -2 + 3 = 3 quasi-liberties. Since cl and
c2 have 3 and 4 quasi-liberties, respedively, these blocks are not 2-surrounding. As there ae no 2-surrounding
blocks, the seach for m-surrounding blocks is terminated, not worrying about the potential 3-surrounding
blocks d1 and d2 (even if they had had fewer than 2 quasi-liberties).

The true R-zone @rresponding to the A2 -treeis shown in Figure 17, where it is sen that only two white
moves adually disturb/avert the threatened A -tree of Figure 15 (all other white moves fail to disturb Figure
15). The two triangled white moves disturb the A -treebecause they render possble the inverted ladder shown
inFigure 19 —arr inverted ladder, Bladk has no way of escaping.

[
2
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Figure 18: Does white 2 save white a?
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Figure 19: The threaening inverted ladder. Figure 20: Zone made by theinversion rule.
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Now consider Figure 18, where White hasjust played the A>-move white 2, disturbing the threatened A -treeof
Figure 15. To find candidates for the next blad A*-move, the now failing A -treeis played out, and all those
A%-moves (and the A*- and A\°-moves generating those A>moves) are recrded. The shadow of these stones is
shown ascirclesin Figure 20.

Using the inversion rule, the relevancy zone would look like Figure 20. This sems to be asafe bet for aR'-
zone mntaining the true R-zone of bladk disturbance moves (black A*-moves following white 2 in Figure 18).
However, theinversion ruleisnot 100 percent safe, which is sen by the fad that ablad stone & g isadually a
disturbance threaening A, = 1. This is o, because after blad g, the inverted ladder shown in Figure 19 no
longer works — and the example is constructed in such a way that after blad g there is no other ladder that
works for White. Thus, bladk g *should in principle be munted among the possible bladk A*-moves in this
pasition, and thus be part of the R -zone.

Obviously, g is not the best move for blad to play in order to fend off the threaened ladder of Figure 19, but
we ae interested in ensuring that all possble bladk A*-moves are generated, leaving it up to some successive
forward-pruning heuristic to cut some of them off afterwards, if they can safely be judged inferior to ather
bladk moves. But at least we should know that moves like bladk g exist.

A much better bladk A*-move would be amove & 1 in Figure 19. After such a move, White is close to being
dead, since White will soon run out of (inverted) ladder thredas on the black block b1l. But the interesting thing
about ablack move a g isthat it encloses the territory below g at the same time & threaening to kill a. Hence,
bladk g could be used as a forcing territory-enclosing move or as ako threa.*®

The question is how the R*-zone caches a move like black g? The answer is that the white block e is actually
surrounding the black block b1 in much the same way as c1, ¢2 and c3, even though it is, of course, much more
indirealy. It is possible to formalize this with help of additional concepts of so-cdled quasi-surroundedness
(white e quasi-surrounding b1) and so-cdled shadow blocks. For reasons of spaceand clarity of presentation
we do not elaborate on these mncepts here.*®

Fortunately, apart from the remaining problems of the inversion rule, the rule seems at least to contain some of
the right abstrad concepts for the mnstruction of reliable relevancy zones, even though it may still overlook a
few exotic moves. Such exotic moves are typicdly easy for the oppaent to fend off and usually not relevant to
the solution of the problem.*’

More work needs to be done in this field, and until some dgorithm for the @nstruction of R'-zones can be
proved to contain the true R-zonesin all cases of Go block tadics, an algorithm like the proposed inversion rule
would just have to be seen as providing some useful foundations for the implementation of abstrad topdogica
knowledge regarding open-spaceGo block tadics. Perhaps some kind of automated theorem proving could be
of use here (cf. the interesting approach in Cazenave (2001); for another example illustrating the inversion
rule, the reader isreferred to Thomsen (2000).

5. CONCLUSIONS AND SCOPE FOR FURTHER WORK

In conclusion, the A-seach method seems to be well suited for obtaining well-defined goals in two-player
board games like chess and Go, provided that passng is alowed o zugzwang is not a motive. As $own in
Sedion 2, A-seach offers the theorems of confidence and convergence, and the dgorithm is smple and
requires negligible working memory in itself. As Sedion 3 indicétes, in many cases A-seach is capable of
offering a large relative seach-spacereduction over standard apha-beta (comparable to the relative reduction
of standard alpha-beta over minimax). In addition, the A-seach method dten eases the implementation of
abstrad game-spedfic knowledge, and A-search can be combined with any search method for searching the A-
trees, including proof-number search (e.g., combining rull moves and proof numbers).

15 | nterestingly, a white A3-answer to a possble bladk A%-move & g in Figure 20 could be amove diredly to the left of or

below g (giving an atari on the blad stone & g). Thiswould be yet another inversion.

'® With these alditional conceptsit is also possble to justify the inclusion d the liberties of the white ladder breser in
Figure13inthe R-zonre.

17 As noted before, such moves could still be relevant as forcing moves or ko threas. Also, in the ontext of finding double

threds, such moves can be highly interesting.
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In Go, the A-seach algorithm is capable of solving open-spacetadicd problems (tesuji), for instance, from
volume 4 of Graded Go Problems (Kano, 1990) with relative eae.'® Regarding the scope for further work, the
following points could be considered.

General paints

Can the dgorithm be taught to find at least one of two (or more) goals by means of identifying double-threa
moves?

Which kinds of seach techniques are well-suited for A-trees? How to manage the use of transposition tables
in the different orders of A-trees? Which kinds of move-ordering techniques could be useful (iterative
degoening with transpaosition tables, history heuristic, etc.)? How to use proof-number seach to solve the A-
trees?

Investigate alarge number of redistic game problems with A-search and ather seach methods, in order to
provide some red-world statistics on the efficiency of the different approaches.

Can zugzwang motives smehow be incorporated into A-search?

How to implement parall elism (multiple processors) most conveniently into A-search?

Go-spedfic paints

6.

Go block tadics: Solving inversions (cf. Subsection 4.2) as independent subproblems (locd games) if
possble. Perhaps some of the tools described in Miller (199) could be of use. Try to reduce the size of the
R’-zone & much as possble by means of solving all A™trees twice — the seaond time using the best moves
(stored in a transposition table) from the first seach. Try to classfy certain kinds of A%moves (cf. Kierulf,
19%).

Implementing abstrad knowledge regarding tsume-go, semed and connedion problems in the ntext of the
A-seach methoddogy.

Using A-seach to search for eyes or Benson-immortality (cf. Benson, 1976 and Miller, 1997).

How to handle seki or ko?
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7. APPENDIX: LAMBDA-SEARCH ILLUSTRATED ON CHESS

Consider the mating problem in Figure 21. In chessmating problems, aA'-moveisa ded, but it is easily seen
that the bladk King cannot be mated with a sequence of white check moves. Hence, in this problem, A,' = 0.
However, the bladk King can be mated in aA*tree as shown below.

A A A
AlA |ge oo
AlA oo
A | A
| Ll (>
& viv & 0 = 1>
Figure 21: Figure 22 Figure 23:

How to mate black? White A>-moves. Blad A?>-move following Re2-el.  White A>-moves following Kg6-h5.

In Figure 21, all the white A>moves (moves threaening a forced mating chedk sequence) are shown. Of these
seven white moves, three of them are dired chedks, in contrast to the four other more quiet moves (Re2-€3,
Re2-el, Rf2-f3 and Rf2-f1). For instance, after white Re2-el, if Bladk passes, a mate results from Rel-gl+,
Kg6-h7/h6/h5, Rf2-h2++. Now, consider Re2-el. As shown in Figure 22, there is only one black A*>move
averting the threaened mating check sequence: Kg6-h5. After Kg6-h5, White has no mating check sequence.
His best try would be Rel-hl+, Kh5-g4, Rh1-gl+, but it peters out after Kgd-h3. In Figure 23, the six white A*-
moves foll owing Kg6-h5 are shown. Of these, four are dired chedks, while the more quiet Rel-gl and Rf2-g2
threaen mating check sequences. After either Rel-g1 (or Rf2-g2), Blad cannot avoid a mating check sequence
no matter where he moves, implying that there ae no A>moves following Rel-gl (or Rf2-g2). Hence Blad
can be dedared dead.



