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Abstract

By means of so-called virtual or shadow prices, short-run factor demands, short-run
marginal costs, etc. can be derived from any long-run cost function. The traditional
approach (short-run/restricted/conditional/variable cost functions) is criticized, and it is
also shown that technological change, scale e!ects, etc. can be added to any cost function
by means of disembodied factor-augmenting e$ciency indexes, easing the interpretations
of the e!ects, but without loss of #exibility. It is shown that the trend- and scale-
parameters of the (long-run) translog cost function can be directly translated into trend-
and scale-parameters of such e$ciency indexes. The techniques are illustrated on the
well-known Berndt}Wood data set, using a (Diewert) long-run generalized Leontief (GL)
cost function, and assuming that capital and labour are quasi-"xed. ( 2000 Published
by Elsevier Science S.A. All rights reserved.
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1. Introduction

Dynamic factor demand functions often originate from a postulated short-run
(restricted/conditional/variable) cost function of the form C"C(>, X
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1Regarding a short-run translog cost function, see e.g. Berndt et al. (1993), and regarding
a short-run generalized Leontief cost function, see e.g. Morrison and Siegel (1997), building on
Morrison (1988). Since the large body of knowledge concerning global curvature properties of the
most commonly used long-run cost functions (see e.g. Caves and Christensen, 1980; Barnett and Lee,
1985; Despotakis, 1986; Diewert and Wales, 1987; Terrell, 1996; Perroni and Rutherford, 1998) does
not apply to such postulated short-run cost functions, little is usually known of the global curvature
properties of these.

P
n
, t), where > is the production level, X

1
is the level of the quasi-"xed factor

(assuming here that there is only one such), P
1
}P

n
are the factor prices, and t is

a time trend. As I see it, there are two problems with this approach. The "rst is
that even if the mathematical form of C( ) ) may resemble and be inspired by
some well-behaved long-run cost function such as, e.g. the translog or generaliz-
ed Leontief, there is no guarantee that the corresponding long-run cost function
implicitly contained in C( ) ) has the same well-behaved properties.1 The second
problem is that the way trend- and scale-e!ects (e!ects from t and >) are
incorporated into di!erent cost functions is not standardized, making the e!ects
di$cult to interpret and compare across di!erent cost functions, and making the
cost functions themselves unnecessarily complex.

This paper proposes a general way of adding both dynamics, trend-, and
scale-e!ects (or e!ects from other exogenous factors) to any long-run cost
function in an easy and unambiguous manner. First, choose a no technical
progress and constant returns to scale (`stripped downa) long-run cost function,
of the simple form CH"CH(>, P

1
, 2,P

n
), where CH( ) ) is homogenous of

degree one with respect to >. Second, deduce all necessary short-run concepts
(including the corresponding short-run cost function) from CH( ) ), by means of
so-called shadow or virtual prices of the quasi-"xed factors (cf. Sections 2.2,
3 and 5). Finally, add trend- and scale-e!ects to both the stripped down long-run
cost function and its derived short-run counterpart by means of factor-speci"c
factor-augmenting e$ciency indexes of the form e

i
"e

i
(t, >) (cf. Section 6).

Provided that the stripped down long-run cost function is #exible and well-behaved,
these three steps yield a fully speci"ed, #exible and well-behaved dynamic factor
demand system, illustrated in the paper by a new and, in my view, superior way
of deriving a dynamic factor demand system from the original long-run general-
ized Leontief cost function of Diewert (1971) (cf. Sections 2.2, 5}7).

Using the above-mentioned three-step approach, the e!ort can be concen-
trated on the "rst step; i.e. "nding a suitable functional form for the stripped
down long-run cost function CH(>, P

1
, 2, P

n
)"> ) cH(P

1
,2, P

n
). All the rest

(dynamics, trend- and scale-e!ects) can be added in a fully mechanical, transpar-
ent and unambiguous way, by means of shadow prices and trend- and scale-
dependent e$ciency indexes. The trend- and scale-parameters of the e$ciency
indexes can be readily compared across di!erent cost functions, and the
trend-parameters of the e$ciency indexes can be directly linked to the text book
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2The function is taken from Morrison (1988), Eq. (1), with d
im
"c

mn
"c

mk
"0 (or Park and

Kwon, 1995, Eq. (12) with the same restrictions). Please note that I have added the "xed costs, P
K
K,

on the right-hand side, so that (1) is the short-run total costs.

concepts of Hicks-, Harrod-, and Solow-neutrality. The use of factor-augment-
ing e$ciency indexes does not entail any loss of #exibility with respect to trend-
and scale-e!ects, and it can be shown that all the trend- and scale-parameters of
the well-known long-run translog cost function can be directly translated into
trend- and scale-parameters of such e$ciency indexes (cf. Section 6).

The paper has eight sections. In Sections 2.1 and 2.2, the traditional short-run
cost function approach is presented, contrasting it with the proposed shadow
price approach. Section 3 surveys the shadow price approach in the general
n-factor case, and Section 4 discusses some theoretical problems with the
traditional short-run cost function approach. Section 5 shows in the n-factor
case how to form all relevant short-run concepts from the well-known long-run
generalized Leontief cost function. Section 6 presents and discusses the e$ciency
index approach, and Section 7 gives a simple empirical application using the
well-known Berndt}Wood data set. The conclusions are in Section 8.

2. Two di4erent approaches to dynamic factor demand modelling

To provide a simple example, a particular cost function } the generalized
Leontief of Diewert (1971) } is presented below in a short- and long-run version.
For the sake of simplicity, it is assumed that there are only three production
factors (one quasi-"xed, and two #exible), no technological change, and constant
returns to scale.

2.1. The traditional short-run cost function approach

A widely used short-run generalized Leontief cost function originates from
Morrison (1988) (also used in, e.g. Park and Kwon, 1995; Morrison and Siegel,
1997). This short-run version of the generalized Leontief is presented below,
being fully representative of short-run cost functions in general, including the
short-run translog. Subsequently, this short-run GL cost function is denoted the
`traditional short-run generalized Leontief cost functiona, and with n"3 pro-
duction factors (one quasi-"xed and two #exible), no technological change, and
constant returns to scale, total short-run costs, C, are given as2
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3The regularity conditions R2C/RK2'0 and RKH/RP
K
(0 together imply that !d

KL
P
L

!d
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P
E
'0 and P

K
#c

KK
(P

L
#P

E
)'0 so that the numerator and denominator of the fractions

are both positive. Therefore, no numerical sign is needed in the second fraction in (7) and (8), pro-
vided that the above conditions are observed. For a description of regularity conditions for short-run
cost functions, see Browning (1983).

where i, j"¸, E and a
LE

"a
EL

. The variables K, ¸ and E denote "xed capital,
labour and energy, P

K
, P

L
and P

E
are the corresponding factor prices, and > is

the production level. The "rst term of (1) is simply the "xed costs of K, whereas
the second term is a generalized Leontief form in the prices of the two #exible
factors (¸ and E). The last two terms express how the variable costs are a!ected
by K, and the concrete mathematical form (1) contains 6"n(n#1)/2 para-
meters necessary for full #exibility (cf. Lau, 1974), but is otherwise quite arbit-
rary. Di!erentiating (1) with respect to P

L
and P

E
(Shephard's Lemma) yields

the short-run factor demands:
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Short-run marginal costs, MC,RC/R>, are obtained by di!erentiating C with
respect to >:
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At this point, a so-called shadow price of K, PI
K
, is introduced, denoting by how

much short-run variable costs are reduced, if K is increased by one unit.
Short-run variable costs are given as G"P

L
¸#P

E
E"C!P

K
K, implying

PI
K
"!RG/RK"P

K
!RC/RK, being in this case:
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The long-run equilibrium condition implies that PI
K
"P

K
(equivalent to

RC/RK"0). This condition yields the long-run stock of capital, KH, as

KH"0.25> A
!d

KL
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P
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#c

KK
(P

L
#P

E
)B

2
. (6)

Inserting KH into the short-run demands for the #exible factors (¸ and E), yields
the long-run demands, ¸H and EH:3
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If KH is inserted into the short-run cost function (C), the corresponding
long-run cost function (CH) is obtained
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, i, j"¸, E. (9)

Finally, long-run marginal costs, MCH,RCH/R>, are given as
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, i, j"¸, E. (10)

2.2. The proposed shadow price approach

In this section, the procedure is turned upside down, beginning with a long-
run cost function and ending up with a short-run cost function. Operating as
previously with three production factors, no technological change, and constant
returns to scale, the (original) long-run generalized Leontief cost function due to
Diewert (1971) is
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. (11)

Long-run factor demands follow from Shephard's Lemma:
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Long-run marginal costs are obtained by di!erentiating (11) with respect
to >:
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, i, j"K, ¸, E. (15)
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At this point, the question is how to get from the long-run cost function (or
factor demands) to the corresponding system of short-run factor demands,
where K is "xed at a predetermined level. The answer is to arti"cially alter the
price of K, P

K
, until KH in (12) is equal to the predetermined level K. When the

long-run demands for the #exible factors, ¸H and EH, are evaluated at this
arti"cial price, they yield the short-run demands for those factors (see e.g. Neary
and Roberts, 1980 or Squires, 1994 for proofs and details. See also Pollak, 1969;
Deaton, 1986 regarding rationing and shadow prices).

In the literature on rationing in consumer demand systems, this price is
usually denoted a `virtuala price following Rothbarth (1941), whereas it is more
obvious to denote the arti"cial price a shadow price in the context of producer
behavior. This is so, because it turns out that the shadow/virtual price concept
de"ned here coincides with the shadow price concept de"ned in the preceding
section; i.e. de"ned as PI

K
"!RG/RK"P

K
!RC/RK (see Squires, 1994, p. 238,

for the proof). The shadow price of the quasi-"xed factor, PI
K
, is consequently

found by solving KH (12) with respect to its own price, P
K
, yielding the following

expression:
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Substituting PI
K

for P
K

in the long-run factor demands for the #exible factors
((13)}(14)), yields the short-run versions of those:
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The corresponding short-run cost function is given as C"P
K
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E, or
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Regarding short-run marginal costs, the shadow price, PI
K
, can be used once

again, as it can be shown that substituting PI
K

for P
K

in the long-run marginal
costs, MCH, yields the short-run marginal costs, MC (see Thomsen, 1998,
Appendix A, for the proof). Alternatively, MC could be found by di!erentiating
(19) with respect to >. This yields, of course, the same.
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Table 1
Overview of the shadow price approach (of Section 2.2)

Long run Short run

Demand for quasi-"xed factors (al) XH
k
"XH

k
(>, P

k
, P

l
) (b1) X

k
"XH

k
(>, PI

k
, P

l
)

Demand for #exible factors (a2) XH
l
"XH

l
(>, P

k
, P

l
) (b2) X

l
"XH

l
(>, PI

k
, P

l
)

Marginal costs (a3) MCH"MCH(>, P
k
, P

l
) (b3) MC"MCH(>, PI

k
, P

l
)

Note: Exogenous variables: >, P
k
, P

l
and X

k
. Endogenous variables: XH

k
, XH

l
, MCH, PI

k
, X

l
and MC.

3. Summarizing the proposed shadow price approach

Regarding the long-run cost functions of Sections 2.1 and 2.2, it is noted that
the long-run version of the traditional short-run GL cost function (9), and the
original Diewert long-run GL cost function (11) are di!erent mathematical
expressions with di!erent properties. Actually, these equations do not have
much in common, apart from the quadratic form of the prices of ¸ and E.
Comparing alternatively the short-run functions (Eqs. (1) and (19)), these are
necessarily di!erent as well.

In the following, the principles of the shadow price approach are summarized,
this time in the general case with n factors, of which k are quasi-"xed and
l"n!k are #exible. The approach is illustrated in Table 1.

In the "rst column, the long-run factor demand functions and marginal cost
function are shown. These are most often derived from a cost or production
function. The variables are to be interpreted as follows: X

k
is a vector of the

k quasi-"xed factors, and X
l

is a vector of the l"n!k #exible factors. The
variables P

k
and P

l
are vectors of the corresponding factor prices. Given

the functional forms of XH
k
( ) ), XH

l
( ) ) and MCH( ) ), the calculation of XH

k
, XH

l
and

MCH is straightforward, since >, P
k

and P
l
are exogenous variables.

Turning to the short-run behaviour, the "rst step is to "nd the k shadow
prices, PI

k
, ensuring that (b1) in Table 1 is observed } assuming here, that these

shadow prices exist and are unique. With these k shadow prices, the calculation
of X

l
and MC is straightforward, since the functional forms, XH

l
( ) ) and MCH( ) )

are reused. Short-run costs can be found by using the formula C"

CH(>, PI
k
, P

l
)#(P

k
!PI

k
)@X

k
. This relationship is relatively straightforward, as

CH(>, PI
k
, P

l
)"PI @

k
X
k
#P @

l
X

l
(see e.g. Squires, 1994, p. 238). Alternatively, short-

run costs can of course be computed as C"P @
k
X
k
#P @

l
X
l
, yielding the same. If

needed, total short-run costs di!erentiated with respect to the k quasi-"xed
factors are given as RC/RX

k
"P

k
!PI

k
(see Squires, 1994, p. 238).

If the shadow prices cannot be found analytically, they can be found by means
of numerical methods. Alternatively, the appendix contains a convenient
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4 In the considered `pointa, all factors are net substitutes, and all cost shares are equal. Own-price
partial price elasticities of !0.33 are not all implausible, and elasticities of that magnitude can, e.g.
be found in Morrison (1988), or in Section 7 of this paper. Here, the parameters in the traditional GL
are a

LL
"a

EE
"4, a

LE
"0.5, d

KL
"d

KE
"!6 and c

KK
"2.5. In the Diewert GL all the b

ij
's are

equal to 1
3
.

5Technical note: the circuits in the 3-D graphs are constructed by making the three factor prices
run through the values ln(P

i
)"2

3
ln(R) sin(x#2

3
n(i!1)), i"1, 2, 3 and 0)x(2n, R being

1.20, 1.44,2, 5.16, respectively. Hence, the circuits depict twists in the relative factor prices of 20%,
and 44%, etc., up to a factor 5.16.

approximation formula, using long-run price elasticities to link short- and long-
run factor demand.

4. Problems with the traditional short-run cost function approach

Apart from being less convenient and transparent (in my view), the traditional
short-run cost function approach tends to su!er from unrealistic and asymmet-
ric isoquants of the underlying production function. For instance, this section
shows that the traditional short-run GL cost function of Section 2.1 does not
fully live up to its name (containing the Leontief case as a special case), since very
peculiar isoquants result from driving the substitution between the quasi-"xed
factor and the other factors close to zero.

The problem is illustrated by comparing the traditional short-run GL cost
function of Section 2.1 with the Diewert long-run GL cost function of Section
2.2. The six parameters of each of the two cost functions are chosen so that they
both yield KH"¸H"EH"1 at prices P

K
"P

L
"P

E
"1 and production level

>"1. In addition, the parameters are chosen so that the long-run partial price
elasticities of the two functions are equal in the considered point, as all own-
price partial price elasticities are set equal to !0.33, and all cross-price partial
elasticities are set equal to 0.17 (i.e. halfway between the Leontief and the
Cobb}Douglas special cases).4

By altering the factor prices, the underlying isoquant may be depicted
using the long-run factor demand functions ((6)}(8) and (12)}(14), respectively).
In Figs. 1 and 2, origo is in the most distant bottom right-hand corner, and three
lines intersect at the central point, (1, 1, 1), showing how the factor demand
system responds to modi"cations in one of the three factor prices, respectively.5

In Fig. 1, the line from the center of the "gure in the direction of the black
square indicates how the three factors respond to a reduction in the price of K.
This increases the demand for K and decreases the demand for both ¸ and E.
The main problem of the traditional short-run GL cost function is that when the
price of K is diminished towards zero, the demand for all three factors tends

8 T. Thomsen / Journal of Econometrics 97 (2000) 1}23



Fig. 1. Isoquant for the traditional short-run GL cost function.

Fig. 2. Isoquant for the Diewert long-run GL cost function. Note: Figs. 1 and 2 are two paired
stereograms, so that a 3-D image may be obtained, when the left and the right images are made to
overlap by the eyes. The pictures at the bottom of each box are 2-D `shadowsa of the above "gures.

6 In Eq. (6), KH tends towards a "nite positive level, when P
K

tends towards zero (d
KL

and d
KE

are
both negative, and c

KK
is positive). In (12) KH tends towards in"nity when P

K
tends towards zero (all

b's are positive).

towards a particular positive level (marked by the black square), in contrast to
the Diewert long-run GL cost function (see Fig. 2), where K tends towards
in"nity.6 Increasing P

K
in the traditional short-run GL cost function in Fig. 1

means following the above-mentioned line in the reverse direction, and it is seen
that increasing P

K
by a factor 5.16 (the outermost circuit) gives dramatic

T. Thomsen / Journal of Econometrics 97 (2000) 1}23 9



7Of course, nobody says that the isoquant of the Diewert long-run GL cost function is the truth,
but actually this isoquant and a three-factor CES-isoquant with elasticity of substitution p"0.50
and equal cost shares turn out to be identical. Therefore, the conclusion is that the traditional
short-run GL cost function di!ers much from a globally well-behaved functional form such as the
CES } at least in this (not unreasonable) case given the chosen elasticities and cost shares.

8Regarding the traditional formulation of the short-run translog cost function (for the "rst use of
this form, see Atkinson and Halvorsen, 1976; for recent examples, see e.g. Shah, 1992; Berndt et al.,
1993; Nemoto et al., 1993), this su!ers from exactly the same problem. Such a short-run translog
} where K is introduced in the quadratic form in the same way as the factor prices } has the further
disadvantage that it is not possible to solve the equation yielding KH analytically (in closed form).

increases in the demand for ¸ and E, compared to the Diewert long-run GL cost
function.7

What is particularly unpleasant about this is that the traditional short-run
GL cost function could not be rejected on the grounds of being theoretically
inconsistent with the neoclassical assumptions. In fact, the isoquant in Fig. 1
(and 2 as well) is globally convex and does not yield negative factor demands
anywhere. This means that the concept of `well-behavednessa or global consist-
ency could perhaps need to be tightened, since it does not, e.g. rule out isoquants
implying that all demands converge towards a speci"c strictly positive level
(the black square in Fig. 1), when a chosen factor price (here: P

K
) is driven to-

wards zero. With the traditional short-run GL cost function, this problem
becomes worse, the smaller the substitution between K and the other factors. In
this respect, the traditional short-run GL does not fully live up to its name
(containing the Leontief case as a special case).8

5. Using the (Diewert) long-run GL cost function generally

In this section, the results concerning the (Diewert) long-run generalized
Leontief cost function of Section 2.2 are generalized to the n factor case with
k quasi-"xed factors and l"n!k #exible factors. However, this section could
also be regarded as a speci"c application of the general long-run cost function
framework presented in Section 3.

The GL cost function is extended slightly compared to Section 2.2, as there
are no longer constant returns to scale, but instead } as in Diewert's original
paper } the underlying production function is homothetic. Thus, > in (11) is
replaced by h(>), where it is assumed that h(0)"0, h@(>)'0, and h(>) tends
towards in"nity as > tends towards in"nity. The homothetic GL cost function
is given as (see Diewert, 1971)

CH"h(>) P0.5{ B P0.5, (21)
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where P is a n]1 column vector of the n factor prices, B"[b
ij
] is a n]n

symmetric matrix of parameters, and where the square root symbol means that
the square root of each element is taken. Shephard's Lemma, XH"RCH/RP,
yields the long-run factor demands:

XH"h(>) PK ~0.5 B P0.5, (22)

where X is a n]1 column vector of factor levels, and where PK denotes the
diagonalization of P into a n]n diagonal matrix. The n production factors are
now divided into k quasi-"xed factors and l"n!k #exible factors, so that (22)
is partitioned into

C
XH
k

XH
l
D"h(>)C

PK ~0.5
k

0

0 PK ~0.5
l

D C
B
kk

B
kl

B@
kl

B
ll
D C

P0.5
k

P0.5
l
D, B

kk
"B@

kk
, B

ll
"B@

ll
.

(23)

That is,

XH
k
"h(>) PK ~0.5

k
(B

kk
P0.5
k

#B
kl

P0.5
l

), (24)

XH
l
"h(>) PK ~0.5

l
(B@

kl
P0.5
k

#B
ll

P0.5
l

). (25)

The next step is to isolate P
k

from (24) to obtain the shadow prices of the
quasi-"xed factors:

PI
k
"[(XK

k
/h(>)!B

kk
)~1B

kl
P0.5
l

]2, (26)

provided that the matrix (XK
k
/h(>)!B

kk
) is non-singular. The square symbol

means squaring each element of the vector, and the derivation exploits
PK 0.5
k

X
k
"XK

k
P0.5
k

. The matrix (XK
k
/h(>)!B

kk
) could be called the `characteristica

matrix, as its inverted counterpart, (XK
k
/h(>)!B

kk
)~1, describes how the levels

of the quasi-"xed factors a!ect the #exible factors in the short run. Inserting
PI
k

in the place of P
k

in the long-run demand equations for the #exible factors
(25) yields the short-run demands for the same

X
l
"h(>) PK ~0.5

l
[B@

kl
(XK

k
/h(>)!B

kk
)~1B

kl
#B

ll
] P0.5

l
. (27)

Short-run costs are most easily found by using C"P@
k
X
k
#P@

l
X
l
, yielding

C"P@
k
X

k
#h(>)P0.5{

l
B
ll

P0.5
l

#h(>)P0.5{
l

B@
kl
(XK

k
/h(>)!B

kk
)~1B

kl
P0.5
l

.
(28)

Long-run marginal costs are found by di!erentiating (21) with respect to >:

MCH"h@(>)P0.5{ B P0.5. (29)

Partitioning again into the quasi-"xed and #exible factors, yields

MCH"h@(>) [P0.5
k

P0.5
l

]C
B
kk

B
kl

B@
kl

B
ll
DC

P0.5
k

P0.5
l
D. (30)
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Inserting the k shadow prices into MCH gives the short-run marginal costs,
MC, as

MC"h@(>) [PI 0.5{
k

B
kk

PI 0.5
k

#2PI 0.5{
k

B
kl

P0.5
l

#P0.5{
l

B
ll

P0.5
l

]. (31)

If the shadow prices, PI
k

(26), are substituted into (31), MC is given as
a function of >, P

l
and X

k
.

Finally } addressing the underlying production function } as it has been
shown on the previous pages, it is not at all necessary to know the functional
form of the underlying production function, but, as it is quite simple to deduce
an expression yielding it, it is derived below. The procedure is to assume that
n!1 out of the n factors are "xed and subsequently derive the short-run
demand for the nth factor. Assuming that there is only one #exible factor in (27),
PK ~0.5
l

and P0.5
l

are both scalars and cancel out, yielding

X
l
"h(>) [B@

kl
(XK

k
/h(>)!B

kk
)~1B

kl
#B

ll
]. (32)

Here, X
l

and B
ll

are scalars, and B
kl

is a (n!1)]1 column vector. This
equation gives a relationship between the n production factors, X

1
}X

n
, and the

production level, > } i.e. the underlying production function. It can be shown
that (32) is equivalent to

K
XK
k
/h(>)!B

kk
!B

kl
!B@

kl
X

l
/h(>)!B

ll
K"0 (33)

or
DXK /h(>)!BD"0. (34)

Therefore, the underlying dual `generalized Leontief production functiona is
given by the condition that the `fulla characteristic matrix is singular; i.e. that
this matrix has zero determinant. Generally,>would be given as the solution to
a polynomial of degree n, so it should be stressed that (34) only gives necessary
conditions for the production function.

6. E7ciency indexes, trend- and scale-e4ects, etc.

Up to now, we have abstracted almost completely from trend- and scale-
e!ects (or e!ects from other exogenous factors). This has been intentional, as
such generalizations can be implemented in a very convenient and unambiguous
way, provided that one is willing to accept the simplifying (but not restricting,
see below) assumption that the e!ects of technological change (t) and the
production level (>) are purely factor-augmenting; i.e. a!ecting each factor
through a factor-speci"c e$ciency-index, e

i
"e

i
(t, >).

Starting out with a conventional production function without e$ciency
indexes, >"F(X

1
,2,X

n
), this yields the long-run factor demand functions:
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9The only exception to this rule is the marginal costs, where it must be remembered that the
e$ciency indexes themselves can be functions of >. Thus, if the e$ciency indexes are >-dependent,
the expression yielding long-run marginal costs, MCH,RCH/R>, must be recalculated in the light of
this. This being done, short-run marginal costs can still be found by inserting the shadow price(s) of
the quasi-"xed factor(s) into the long-run marginal cost function.

XH
i
"XH

i
(>, P

1
,2, P

n
), i"1,2, n, and the long-run cost function

CH"CH(>, P
1
,2, P

n
). Using the shadow price result, short-run factor de-

mands can be directly derived from long-run factor demands (see Section 3).
If it is assumed that only X

1
is quasi-"xed, the short-run factor demands will

be of the form X
i
"X

i
(>, X

1
, P

2
,2, P

n
), i"2,2n. If we now assign an

e$ciency index, e
i
, to each factor, this yields a production function with dis-

embodied factor-augmenting e$ciency indexes, >"F(e
1
X

1
,2, e

n
X

n
). The

functional form, F( ) ), is the same, and by rewriting the costs as
C"P

1
X

1
#2#P

n
X

n
"(P

1
/e

1
) ) (e

1
X

1
)#2#(P

n
/e

n
) ) (e

n
X

n
), it is easy to

prove that the following long-run factor demands result:

XH
i
"

1

e
i

XH
i A>,

P
1

e
1

,2,
P
n

e
n
B, i"1,2, n. (35)

And the following long-run cost function:

CH"CH A>,
P
1

e
1

,2,
P

n
e
n
B. (36)

From (35) it is seen that the ezciency-corrected factor levels, e
i
XH

i
, respond to

the ezciency-corrected factor prices, P
i
/e

i
. The mathematical functions XH

i
( ) )

and CH( ) ) are the same as without e$ciency indexes, so the point is that it is
quite easy to introduce disembodied factor-augmenting technological progress
(or e!ects from other exogenous factors) and/or scale e!ects into any system of
long-run factor demand functions (or into any long-run cost function). Similarly,
short-run factor demands are given as (assuming here, that there is only one
quasi-"xed factor, X

1
):

X
i
"

1

e
i

X
i A>, e

1
X

1
,
P

2
e
2

,2,
P
n

e
n
B, i"2,2, n. (37)

Generally, one can deduce all concepts from a `stripped downa constant
returns to scale cost or production function without technological change/other
exogenous variables, and afterwards introduce exogenous factors and scale
e!ects via the e$ciency indexes (cf. Section 1). The indexes are introduced by
multiplying all factor levels and dividing all factor prices with the corresponding
e$ciency indexes, just as if the factors and factor prices were pre-corrected for
e$ciency.9
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The indexes themselves could be formulated as, e.g.

log(e
i
)"u

i1
t#0.5u

2
t2#t

i1
log(>)#0.5t

2
log2(>)#/t log(>),

i"1,2, n. (38)

In this formulation, the second-order e!ects and the cross e!ect between t and
log(>) are assumed to be identical in each of the n e$ciency indexes. In (38), the
expression u

i1
#u

2
t#/ log(>) indicates } multiplied by 100 } by how many

per cent the e$ciency of factor i increases from period t to period t#1, and the
expression t

i1
#t

2
log(>)#/t denotes by how many per cent the e$ciency

index increases, if the production level is increased by 1%. Other formulations
might prove equally useful, and other exogenous factors in addition to time,
t } such as machine e$ciency, squared time di!erences in the capital stock
(representing internal costs of installing/removing capital equipment), mean age
of the capital stock (capturing vintage-e!ects), eduction level/human capital,
fuel-e$ciency, climate, land, infrastructure, public R&D, etc. } may enter the
e$ciency indexes as well.

Fortunately, it turns out that e$ciency indexes of the form (38) render any
stripped down #exible cost function #exible in t and >, as shown below (for
more details and a numerical example, the reader is referred to Thomsen, 1998,
Appendix B). Consider a stripped down long-run translog cost function,
log(CH)"a

0
#log(>)#A@ log(P)#0.5 log(P @)B log(P) where A is a n]1 vec-

tor of parameters summing to unity, and B is a n]n symmetric matrix of
parameters with rows and columns summing to zero. Consider also the standard
long-run translog cost function: log(CH)"a

0
#A@ log(P)#a

t
t#a

y
log(>)#

0.5 log(P @)B log(P)#B@
t
log(P)t#B@

y
log(P) log(>)#0.5a

tt
t2#b

ty
t log(>)#0.5a

yy
log2(>), where a

t
, a

y
, a

tt
, b

ty
and a

yy
are scalars, and B

t
and B

y
are n]1 vectors

of parameters summing to zero (see Christensen et al., 1971,1973, or Diewert and
Wales, 1987, p. 46). Now, let X

1
, X

2
, W

1
, W

2
and U be n]1 vectors of the

e$ciency parameters of (38) (i.e. with identical elements of the three vectors
X

2
, W

2
and U). It can be shown (see Thomsen, 1998, Appendix B, for more

details) that augmenting the stripped down translog with e$ciency indexes of
the form (38) results in the standard translog, with the following relationships
between the 2n#3 free parameters of a

t
, a

y
, a

tt
, b

ty
, a

yy
, B

t
and B

y
on the one

hand, and the 2n#3 free parameters of X
1
, X

2
, W

1
, W

2
and U on the other:

a
t
"!X@

1
A, a

y
"1!W@

1
A, B

t
"!BX

1
, B

y
"!BW

1
, a

tt
"!X@

2
A#X@

1
BX

1
,

a
yy
"!W@

2
A#W@

1
BW

1
, b

ty
"!U@A#W@

1
BX

1
. These relationships yield

a completely new way of interpreting the translog trend- and scale-parameters,
since these can be directly translated into e$ciency parameters, and vice versa.
And since the stripped down translog can mimic the factor price substitution of
any other stripped down #exible cost function to a second-order degree, it
follows that e$ciency indexes of the form (38) render any stripped down #exible
cost function fully #exible in t and >.
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10Regarding scale-e!ects, the quadratic formulation of the >-e!ects in (39) (or in the more
restricted (38)) is #exible enough to make possible the presence of U-shaped long-run average costs,
ACH"CH/>. With t

i1
"t

1
, t

i2
"t

2
, and /

i
"/, the scale-e!ects are of the so-called `Nerlove-

Ringstada type (cf. Zellner and Ryu, 1998).

11This is the normal case. However, if the substitution is very large, the use of factor i itself might
even rise, if it gets more e$cient. This would be the case if the own-price elasticity of factor i is below
!1. Besides, a rise in the e$ciency of factor i rises the use of those of the other factors that are
complementary to i (negative cross-price elasticities).

In spite of (38) being fully #exible, one could, however, relax the restriction
that the second-order e!ects are identical for the di!erent indexes. Thus, a more
general formulation would be the following:

log(e
i
)"u

i1
t#0.5u

i2
t2#t

i1
log(>)#0.5t

i2
log2(>)#/

i
t log(>),

i"1,2, n. (39)

Here, if u
i1
"u

1
, u

i2
"u

2
, and /

i
"/ (i.e., the u

i1
's the u

i2
's, and the /

i
's

are identical), technological change is Hicks-neutral (unbiased). If u
i1
"u

i2
"

/
i
"0, except the u

i1
-, u

i2
-, and /

i
-parameters of the labour e$ciency index,

technological change is Harrod neutral (labour augmenting). And if u
i1
"u

i2
"

/
i
"0, except the u

i1
-, u

i2
-, and /

i
-parameters of the capital e$ciency index,

technological change is Solow neutral (capital augmenting).
If t

i1
"t

1
, t

i2
"t

2
, and /

i
"/, the production function is homothetic

(unbiased scale e!ects). Speci"cally, if t
i1
"t

1
, t

i2
"0, and /

i
"0, the pro-

duction function is homogenous of degree 1/(1!t
1
). The restriction

t
i1
"t

i2
"/

i
"0 implies constant returns to scale.10

Regarding the e$ciency index approach, it is "nally worth mentioning that
the way these e$ciency indexes in#uence the long-run demands can be decom-
posed using the following simple relationship:

R log(XH)"!(I#E) R log (e), (40)

where XH is a n]1 vector of the long-run factor levels, I is a n]n identity matrix,
E is a n]n matrix of long-run partial price elasticities, and e is a n]1 vector of
e$ciency indexes. From this relationship, it is seen that if there is no factor
substitution (E"0), an increase in the e$ciency of factor i by 1% simply causes
a corresponding decrease in the use of factor i itself by 1%. If there is non-zero
factor substitution, the use of factor i would fall by less than 1%, and this is
`useda to reduce the levels of one or more of the other factors as well.11 If the
formulation (39) is used, the trend- and scale-e!ects can be decomposed into

R log(XH)/Rt"!(I#E)(X
1
#X

2
t#U log(>)), and

R log(XH)/R log(>)"!(I#E)(W
1
#W

2
log(>)#Ut)#i,

where X
1
, X

2
, W

1
, W

2
and U are n]1 vectors of the e$ciency parameters of

(39), and i is a vector of ones.
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12See Berndt and Wood (1975) and Berndt and Khaled (1979) regarding the construction of the
data.

13This paper does not deal with the problem of explaining why the quasi-"xed production factors
are not #exible } and precisely how the quasi-"xed factors are expected to adjust over time. That
would imply discussing adjustment costs and uncertainty, and going into that discussion would be
beyond the scope of this paper. The interested reader is instead referred to Nickell (1985), Galeotti
(1996), or Atkinson and Halvorsen (1998). Nickell demonstrates that under some reasonable
assumptions regarding the short-run cost function, adjustment costs, and expectation rules, dynamic
optimization implies that the quasi-"xed factors adjust to their long-run levels by means of simple
error correction mechanisms.

To summarize this section, the advantage of the e$ciency index approach lies
in two points. Firstly, it is easy to introduce these indexes } and new exogenous
variables inside them } into any stripped down no technological change and
constant returns to scale cost function or factor demand system. Secondly, the
interpretation of the parameters of such e$ciency indexes is much more
straightforward } and comparable over di!erent cost functions } than, e.g.
trying to "gure out the interpretation of a trend in a cost share or factor intensity
(for instance, the trend-parameters of the e$ciency indexes can be directly linked
to the textbook concepts of Hicks-, Harrod- and Solow neutrality).

7. A simple example using the Berndt}Wood data set

To illustrate the above techniques, an illustrative estimation on the much
used Berndt}Wood data set (covering U.S. manufacturing over the period
1947}1971) is presented. In the estimation, capital (K), labour (¸), energy (E) and
materials (M) are described as a function of the four corresponding factor prices,
the production level (>), and time (t).12

Diewert and Wales (1987) use the same data set to estimate } among other
things } translog- and generalized Leontief cost functions, with full #exibility
regarding price elasticities, trend- and scale-e!ects. As I see it, however, the scale
e!ects of these estimations are not fully convincing, because t and log(>) are
highly correlated in the data set (with a correlation coe$cient of 0.971). In order
to avoid these unpleasant multicollinearity problems and obtain more robust
results, I assume constant returns to scale. Hence, I use a stripped down
long-run generalized Leontief cost function extended with e$ciency indexes
(39) } the latter without >-e!ects, but with unrestricted t2-terms; i.e. two trend
parameters in each of the four e$ciency indexes.

Abstracting from possible cross-e!ects in the adjustment of K and ¸, it is
assumed that K and ¸ adjust to their long-run levels according to the following
simple error correction mechanism (here for K):13

Dlog(K
t
)"j

1
Dlog(KH

t
)#j

2
[log(KH

t~1
)!log(K

t~1
)]#u

t
, (41)
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14More precisely, Eq. (22) with h(>)"> is used as regards KH and ¸H, and Eq. (27) with h(>)">
is used as regards E and M. All of these four demand equations are extended with e$ciency indexes
in the manner shown in (35) and (37), respectively, and logarithms are taken on both sides of the
equality signs in the E- and M-equations. The e$ciency indexes are of the form (39) with the last
three terms suppressed. The estimation procedure is maximum likelihood, assuming that the
disturbance terms are serially uncorrelated and follow a multivariate normal distribution with zero
means and constant variances and covariances.

15The presence of autocorrelation indicates that the model is probably somewhat mis-speci"ed.
Potential autocorrelation-causing left-out variables could be the `truea e$ciency indexes (imitated
in the estimation by quadratic trends) } i.e., for instance, machine e$ciency for K, education
level/human capital for ¸, and energy e$ciency for E. Even abstracting from such left-out variables,
the presence of lagged endogenous variables in the K- and ¸-equations renders the ML estimates
inconsistent, if the error terms are autocorrelated. A relatively simple remedy against this could be
to formulate a simple AR(1) process in the four error terms (i.e., u

t
"ou

t~1
#e

t
), but since

the estimation is for illustrative purposes only, that would be beyond the scope of this paper. In
a more ambitious empirical analysis, IM-tests (Information Matrix) could be carried out, to test
whether the model is mis-speci"ed. Also, since the sample contains 24 observations only, boot-
strapping techniques could be used to render more reliable small-sample distributions of the
parameters. See e.g. Davidson and MacKinnon (1993) for details.

where j
1

and j
2

are adjustment parameters. Utilizing the results of Sections
5 and 6 to obtain short-run factor demand equations for E and M, the result
shown in Table 2 is obtained.14

The 4]4 numbers to the left are long-run partial price elasticities (evaluated
in 1971), where, inter alia, it is seen that K and E are complementary. The two
columns of growth rates of the e$ciency indexes (in 1949 and 1971, respectively)
show, e.g. that the e$ciency growth of K changed from 12.4% p.a. in 1949 to
!13.9% p.a. in 1971. The standard error (SEE) of the residuals is in the range
1.8}2.3%, and the Jarque}Bera tests do not indicate serious problems with the
assumption of the error terms being normally distributed, whereas the Dur-
bin}Watson tests indicate the presence of autocorrelated error terms. However,
it must be kept in mind that the dynamic formulation is very simple, with a total
of only four adjustment parameters.15

The growth rates of the K- and E-e$ciencies have been decreasing over the
estimation period, hinting that technological progress and capital/energy could
be conceived of as being complementary in the second half of the estimation
period. In Fig. 3, the historical "t is depicted.

In the "gure, among other things it can be seen that KH exceeds K in most
of the estimation period (the average gap being 17%), which is re#ected in
EH also exceeding E (due to the complementarity of K and E). If the production
level, >, is increased by 1% in the dynamic model, the adjustment looks as
seen in Fig. 4.

In the long run, all factors are also increased by 1%, due to the imposed
constant returns to scale. However, in the short run K and ¸ react sluggishly,
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Fig. 3. Historical "t.

Fig. 4. The dynamic e!ect of a 1% increase in the production level.
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Table 3
E!ects of technological change on inputs and total costs

K ¸ E M C

1948 !2.0 !1.1 !1.7 !0.1 !0.6
1971 !0.8 !0.8 #2.6 !0.8 !0.6

Note: Table entries are 100 R log(X
i
)/Rt for input i and 100 R log(C)/Rt for total costs.

16Using the same model, I have obtained quite similar results (K and E also being complement-
ary, and ¸ performing labour-hoarding) on Danish aggregate data for K, ¸ E and M over the period
1957}1989. The interested reader is referred to Thomsen (1995).

causing M to overshoot, whereas E follows K quite closely due to the
complementarity of K and E. The sluggishness of ¸ suggests that the "rms
perform labour-hoarding in the "rst year of the adjustment process.16

Keeping in mind the simplicity of the dynamic adjustment, the model seems
reasonable, perhaps apart from the fact that the growth rate of the e$ciency
indexes of K and E changes rather rapidly. The e!ects of the e$ciencies on
factor demand are, however, propagated through the matrix of price elasticities
(cf. Eq. (40) in Section 6), and the e!ects on factor demand and costs are much
less di!erent, as shown in Table 3.

From Table 3, it can be seen that the annual decrease of total costs due to
technological progress has been 0.6% in both 1948 and 1971.

8. Conclusions

In this paper, it has been shown that it is possible to start out with a no
technical progress and constant returns to scale (`stripped downa) long-run cost
function, adding dynamics, trend- and scale-e!ects by means of shadow prices
and e$ciency indexes.

For instance, using the original (Diewert) long-run generalized Leontief cost
function (without trend- and scale-e!ects) as a starting point, one can analyti-
cally compute all the usually employed short-run concepts by means of shadow
prices (see Sections 2.2 and 5), and trend- and scale-e!ects can be added easily
and unambiguously by means of the e$ciency index approach of Section 6. This
makes the long-run generalized Leontief cost function a promising candidate for
dynamic factor demand modelling, and Section 7 shows that it is possible to
estimate a quite plausible KLEM factor demand system (of which K and ¸ are
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assumed quasi-"xed) on the Berndt}Wood data set, using this cost function as
a starting point, and extending it by means of shadow prices and e$ciency
indexes.

All in all, the paper shows that there is no need to spend time and e!ort on
inventing new short-run cost functions, including "guring out how to best
introduce trend- and scale-e!ects (or e!ects from other exogenous factors) into
these. The e!ort should instead be concentrated on "nding a promising stripped
down long-run cost function, CH(>, P

1
,2, P

n
)"> ) cH(P

1
,2,P

n
), letting the

shadow prices and e$ciency indexes take care of the rest.
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Appendix A. Approximations between short- and long-run factor demand

See Thomsen (1998), Section 7 for more details on this. The idea is to use
a logarithmic linearization of the relationship between the factors and the factor
prices around the long-run levels of the former, XH:

R log(XH)"E R log(P). (A.1)

Here, XH is a n]1 vector of the n factors, E is a n]n matrix of long-run partial
price elasticities and P is a n]1 vector of factor prices. Partitioning (A.1) into the
k quasi-"xed and l"n!k #exible factors, the following is obtained:

R logC
XH
k

XH
l
D"C

E
kk

E
kl

E
lk

E
ll
D R logC

P
k

P
l
D. (A.2)

From (A.2) it follows that the virtual/shadow prices, called PI
K
, of the quasi-

"xed factors can be approximated as (please note in the two following formulas
that the shadow price method leaves P

l
unaltered):

log(PI
k
)!log(P

k
)+E~1

kk
[log(X

k
)!log(XH

k
)], (A.3)

provided that the submatrix E
kk

is non-singular. Inserting (A.3) into XH
l

in (A.2)
results in

log(X
l
)+log(XH

l
)#E

lk
E~1
kk

[log(X
k
)!log(XH

k
)]. (A.4)

These are approximated short-run factor demands for the #exible factors (X
l
),

but it must be made clear, that the approximation may be less satisfactory far
from the long-run levels. But under normal circumstances } i.e. provided that
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the quasi-"xed factors do not deviate too much from their long-run levels } the
formula could prove very useful.
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